

Hands-On Machine Learning
for Algorithmic Trading

Design and implement investment strategies based on smart
algorithms that learn from data using Python

Stefan Jansen

BIRMINGHAM - MUMBAI

Hands-On Machine Learning for Algorithmic
Trading
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Sunith Shetty
Acquisition Editor: Joshua Nadar
Content Development Editor: Snehal Kolte
Technical Editor: Sayli Nikalje
Copy Editor: Safis Editing
Project Coordinator: Manthan Patel
Proofreader: Safis Editing
Indexer: Rekha Nair
Graphics: Jisha Chirayil
Production Coordinator: Arvindkumar Gupta

First published: December 2018

Production reference: 1311218

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78934-641-1

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Stefan Jansen, CFA is Founder and Lead Data Scientist at Applied AI where he advises
Fortune 500 companies and startups across industries on translating business goals into a
data and AI strategy, builds data science teams and develops ML solutions. Before his
current venture, he was Managing Partner and Lead Data Scientist at an international
investment firm where he built the predictive analytics and investment research practice.

He was also an executive at a global fintech startup operating in 15 markets, worked for the
World Bank, advised Central Banks in emerging markets, and has worked in 6 languages
on four continents. Stefan holds Master's from Harvard and Berlin University and teaches
data science at General Assembly and Datacamp.

I thank Packt for this opportunity and the team who made the result possible, esp Snehal
Kolte for facilitating the editing process. Many supporters deserve mention but Prof
Zeckhauser at Harvard stands out for inspiring interest in the creative use of quantitative
methods to solve problems. I am indebted to my parents for encouraging curiosity and
supporting me throughout. Above all, however, I am grateful for Mariana who makes it all
worthwhile.

About the reviewers
Doug Ortiz is an experienced enterprise cloud, big data, data analytics, and solutions
architect who has architected, designed, developed, re-engineered, and integrated
enterprise solutions. His other expertise includes Amazon Web Services, Azure, Google
Cloud platform, business intelligence, Hadoop, Spark, NoSQL databases, and SharePoint.

He is the founder of Illustris.

Huge thanks to my wonderful wife, Milla, as well as Maria, Nikolay, and our children for
all their support.

Sandipan Dey is a data scientist with a wide range of interests, including topics such as
machine learning, deep learning, image processing, and computer vision. He has worked in
numerous data science fields, including recommender systems, predictive models for the
events industry, sensor localization models, sentiment analysis, and device prognostics. He
earned his master's degree in computer science from the University of Maryland, Baltimore
County, and has published in a few IEEE data mining conferences and journals.

He has earned certifications from 100+ MOOCs on data science, machine learning, deep
learning, image processing, and related courses/specializations. He is a regular blogger on
his blog (sandipanweb) and is a machine learning education enthusiast.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Machine Learning for Trading 8
How to read this book 9

What to expect 10
Who should read this book 10
How the book is organized 11

Part I – the framework – from data to strategy design 11
Part 2 – ML fundamentals 12
Part 3 – natural language processing 13
Part 4 – deep and reinforcement learning 13

What you need to succeed 14
Data sources 14
GitHub repository 15
Python libraries 15

The rise of ML in the investment industry 15
From electronic to high-frequency trading 16
Factor investing and smart beta funds 18
Algorithmic pioneers outperform humans at scale 20

ML driven funds attract $1 trillion AUM 21
The emergence of quantamental funds 22
Investments in strategic capabilities 23

ML and alternative data 23
Crowdsourcing of trading algorithms 25

Design and execution of a trading strategy 25
Sourcing and managing data 26
Alpha factor research and evaluation 27
Portfolio optimization and risk management 28
Strategy backtesting 28

ML and algorithmic trading strategies 29
Use Cases of ML for Trading 30

Data mining for feature extraction 30
Supervised learning for alpha factor creation and aggregation 31
Asset allocation 31
Testing trade ideas 32
Reinforcement learning 32

Summary 32

Chapter 2: Market and Fundamental Data 33
How to work with market data 34

Market microstructure 34
Marketplaces 34

Table of Contents

[ii]

Types of orders 36
Working with order book data 36

The FIX protocol 37
Nasdaq TotalView-ITCH Order Book data 38

Parsing binary ITCH messages 38
Reconstructing trades and the order book 42

Regularizing tick data 45
Tick bars 46
Time bars 47
Volume bars 49
Dollar bars 50

API access to market data 50
Remote data access using pandas 51

Reading html tables 51
pandas-datareader for market data 51
The Investor Exchange 52

Quantopian 53
Zipline 54
Quandl 55
Other market-data providers 56

How to work with fundamental data 57
Financial statement data 57

Automated processing – XBRL 57
Building a fundamental data time series 58

Extracting the financial statements and notes dataset 58
Retrieving all quarterly Apple filings 60
Building a price/earnings time series 61

Other fundamental data sources 62
pandas_datareader – macro and industry data 63

Efficient data storage with pandas 63
Summary 64

Chapter 3: Alternative Data for Finance 65
The alternative data revolution 66

Sources of alternative data 67
Individuals 68
Business processes 68
Sensors 69

Satellites 70
Geolocation data 70

Evaluating alternative datasets 71
Evaluation criteria 72

Quality of the signal content 72
Asset classes 72
Investment style 72
Risk premiums 72
Alpha content and quality 73

Quality of the data 73
Legal and reputational risks 73
Exclusivity 74
Time horizon 74

Table of Contents

[iii]

Frequency 74
Reliability 75

Technical aspects 75
Latency 75
Format 75

The market for alternative data 75
Data providers and use cases 77

Social sentiment data 77
Dataminr 78
StockTwits 78
RavenPack 78

Satellite data 78
Geolocation data 79
Email receipt data 79

Working with alternative data 79
Scraping OpenTable data 79

Extracting data from HTML using requests and BeautifulSoup 80
Introducing Selenium – using browser automation 81
Building a dataset of restaurant bookings 82
One step further – Scrapy and splash 83

Earnings call transcripts 84
Parsing HTML using regular expressions 85

Summary 87

Chapter 4: Alpha Factor Research 88
Engineering alpha factors 89

Important factor categories 90
Momentum and sentiment factors 90

Rationale 91
Key metrics 92

Value factors 93
Rationale 94
Key metrics 95

Volatility and size factors 96
Rationale 96
Key metrics 97

Quality factors 97
Rationale 98
Key metrics 98

How to transform data into factors 99
Useful pandas and NumPy methods 100

Loading the data 100
Resampling from daily to monthly frequency 100
Computing momentum factors 101
Using lagged returns and different holding periods 102
Compute factor betas 102

Built-in Quantopian factors 103
TA-Lib 103

Seeking signals – how to use zipline 104
The architecture – event-driven trading simulation 105
A single alpha factor from market data 106

Table of Contents

[iv]

Combining factors from diverse data sources 108
Separating signal and noise – how to use alphalens 110

Creating forward returns and factor quantiles 110
Predictive performance by factor quantiles 112
The information coefficient 114
Factor turnover 117

Alpha factor resources 117
Alternative algorithmic trading libraries 117

Summary 118

Chapter 5: Strategy Evaluation 119
How to build and test a portfolio with zipline 120

Scheduled trading and portfolio rebalancing 120
How to measure performance with pyfolio 122

The Sharpe ratio 122
The fundamental law of active management 123
In and out-of-sample performance with pyfolio 124

Getting pyfolio input from alphalens 125
Getting pyfolio input from a zipline backtest 125
Walk-forward testing out-of-sample returns 126
Summary performance statistics 127
Drawdown periods and factor exposure 128
Modeling event risk 129

How to avoid the pitfalls of backtesting 129
Data challenges 130

Look-ahead bias 130
Survivorship bias 130
Outlier control 131
Unrepresentative period 131

Implementation issues 131
Mark-to-market performance 131
Trading costs 132
Timing of trades 132

Data-snooping and backtest-overfitting 132
The minimum backtest length and the deflated SR 133
Optimal stopping for backtests 133

How to manage portfolio risk and return 134
Mean-variance optimization 135

How it works 136
The efficient frontier in Python 136
Challenges and shortcomings 139

Alternatives to mean-variance optimization 140
The 1/n portfolio 140
The minimum-variance portfolio 141
Global Portfolio Optimization - The Black-Litterman approach 141
How to size your bets – the Kelly rule 142

The optimal size of a bet 142
Optimal investment – single asset 143

Table of Contents

[v]

Optimal investment – multiple assets 144
Risk parity 144
Risk factor investment 145
Hierarchical risk parity 145

Summary 146

Chapter 6: The Machine Learning Process 147
Learning from data 148

Supervised learning 150
Unsupervised learning 150

Applications 151
Cluster algorithms 151
Dimensionality reduction 152

Reinforcement learning 152
The machine learning workflow 153

Basic walkthrough – k-nearest neighbors 154
Frame the problem – goals and metrics 154

Prediction versus inference 155
Causal inference 155

Regression problems 156
Classification problems 158

Receiver operating characteristics and the area under the curve 159
Precision-recall curves 159

Collecting and preparing the data 160
Explore, extract, and engineer features 161

Using information theory to evaluate features 161
Selecting an ML algorithm 162
Design and tune the model 162

The bias-variance trade-off 163
Underfitting versus overfitting 163
Managing the trade-off 164
Learning curves 165

How to use cross-validation for model selection 166
How to implement cross-validation in Python 167

Basic train-test split 167
Cross-validation 168

Using a hold-out test set 168
KFold iterator 169
Leave-one-out CV 169
Leave-P-Out CV 170
ShuffleSplit 170

Parameter tuning with scikit-learn 170
Validation curves with yellowbricks 171
Learning curves 171
Parameter tuning using GridSearchCV and pipeline 172

Challenges with cross-validation in finance 172
Time series cross-validation with sklearn 173
Purging, embargoing, and combinatorial CV 173

Summary 174

Table of Contents

[vi]

Chapter 7: Linear Models 175
Linear regression for inference and prediction 176
The multiple linear regression model 177

How to formulate the model 177
How to train the model 178

Least squares 178
Maximum likelihood estimation 179
Gradient descent 180

The Gauss—Markov theorem 181
How to conduct statistical inference 182
How to diagnose and remedy problems 184

Goodness of fit 184
Heteroskedasticity 185
Serial correlation 186
Multicollinearity 187

How to run linear regression in practice 187
OLS with statsmodels 187
Stochastic gradient descent with sklearn 190

How to build a linear factor model 190
From the CAPM to the Fama—French five-factor model 191
Obtaining the risk factors 193
Fama—Macbeth regression 194

Shrinkage methods: regularization for linear regression 198
How to hedge against overfitting 198
How ridge regression works 199
How lasso regression works 201

How to use linear regression to predict returns 201
Prepare the data 201

Universe creation and time horizon 202
Target return computation 202
Alpha factor selection and transformation 203
Data cleaning – missing data 203
Data exploration 204
Dummy encoding of categorical variables 204
Creating forward returns 205

Linear OLS regression using statsmodels 206
Diagnostic statistics 206

Linear OLS regression using sklearn 207
Custom time series cross-validation 207
Select features and target 207
Cross-validating the model 208
Test results – information coefficient and RMSE 209

Ridge regression using sklearn 210
Tuning the regularization parameters using cross-validation 211
Cross-validation results and ridge coefficient paths 212
Top 10 coefficients 212

Lasso regression using sklearn 213

Table of Contents

[vii]

Cross-validated information coefficient and Lasso Path 214
Linear classification 215

The logistic regression model 215
Objective function 216
The logistic function 216
Maximum likelihood estimation 217

How to conduct inference with statsmodels 218
How to use logistic regression for prediction 220

How to predict price movements using sklearn 220
Summary 222

Chapter 8: Time Series Models 224
Analytical tools for diagnostics and feature extraction 225

How to decompose time series patterns 226
How to compute rolling window statistics 227

Moving averages and exponential smoothing 228
How to measure autocorrelation 229
How to diagnose and achieve stationarity 229

Time series transformations 230
How to diagnose and address unit roots 231
Unit root tests 233

How to apply time series transformations 234
Univariate time series models 236

How to build autoregressive models 237
How to identify the number of lags 237
How to diagnose model fit 238

How to build moving average models 238
How to identify the number of lags 239
The relationship between AR and MA models 239

How to build ARIMA models and extensions 239
How to identify the number of AR and MA terms 240
Adding features – ARMAX 240
Adding seasonal differencing – SARIMAX 241

How to forecast macro fundamentals 241
How to use time series models to forecast volatility 243

The autoregressive conditional heteroskedasticity (ARCH) model 244
Generalizing ARCH – the GARCH model 245

Selecting the lag order 245
How to build a volatility-forecasting model 246

Multivariate time series models 250
Systems of equations 250
The vector autoregressive (VAR) model 251
How to use the VAR model for macro fundamentals forecasts 252
Cointegration – time series with a common trend 256

Testing for cointegration 257
How to use cointegration for a pairs-trading strategy 258

Summary 259

Table of Contents

[viii]

Chapter 9: Bayesian Machine Learning 260
How Bayesian machine learning works 261

How to update assumptions from empirical evidence 262
Exact inference: Maximum a Posteriori estimation 263

How to select priors 264
How to keep inference simple – conjugate priors 265
How to dynamically estimate the probabilities of asset price moves 265

Approximate inference: stochastic versus deterministic approaches 267
Sampling-based stochastic inference 268
Markov chain Monte Carlo sampling 268

Gibbs sampling 269
Metropolis-Hastings sampling 270
Hamiltonian Monte Carlo – going NUTS 270

Variational Inference 270
Automatic Differentiation Variational Inference (ADVI) 271

Probabilistic programming with PyMC3 271
Bayesian machine learning with Theano 272
The PyMC3 workflow 272

Model definition – Bayesian logistic regression 273
Visualization and plate notation 274
The Generalized Linear Models module 275
MAP inference 275

Approximate inference – MCMC 275
Credible intervals 276

Approximate inference – variational Bayes 276
Model diagnostics 277

Convergence 277
Posterior Predictive Checks 279

Prediction 279
Practical applications 280

Bayesian Sharpe ratio and performance comparison 280
Model definition 281
Performance comparison 281

Bayesian time series models 282
Stochastic volatility models 283

Summary 283

Chapter 10: Decision Trees and Random Forests 284
Decision trees 285

How trees learn and apply decision rules 285
How to use decision trees in practice 287

How to prepare the data 287
How to code a custom cross-validation class 288
How to build a regression tree 288
How to build a classification tree 291

How to optimize for node purity 291
How to train a classification tree 292

How to visualize a decision tree 292
How to evaluate decision tree predictions 293
Feature importance 294

Table of Contents

[ix]

Overfitting and regularization 294
How to regularize a decision tree 295
Decision tree pruning 296

How to tune the hyperparameters 297
GridsearchCV for decision trees 297
How to inspect the tree structure 298
Learning curves 299

Strengths and weaknesses of decision trees 300
Random forests 301

Ensemble models 302
How bagging lowers model variance 303

Bagged decision trees 304
How to build a random forest 306
How to train and tune a random forest 307

Feature importance for random forests 310
Out-of-bag testing 311

Pros and cons of random forests 311
Summary 312

Chapter 11: Gradient Boosting Machines 313
Adaptive boosting 314

The AdaBoost algorithm 315
AdaBoost with sklearn 317

Gradient boosting machines 319
How to train and tune GBM models 321

Ensemble size and early stopping 321
Shrinkage and learning rate 322
Subsampling and stochastic gradient boosting 322

How to use gradient boosting with sklearn 323
How to tune parameters with GridSearchCV 324
Parameter impact on test scores 325
How to test on the holdout set 327

Fast scalable GBM implementations 327
How algorithmic innovations drive performance 328

Second-order loss function approximation 328
Simplified split-finding algorithms 330
Depth-wise versus leaf-wise growth 330
GPU-based training 331
DART – dropout for trees 331
Treatment of categorical features 332
Additional features and optimizations 333

How to use XGBoost, LightGBM, and CatBoost 333
How to create binary data formats 333
How to tune hyperparameters 335

Objectives and loss functions 335
Learning parameters 335
Regularization 336
Randomized grid search 336

Table of Contents

[x]

How to evaluate the results 338
Cross-validation results across models 338

How to interpret GBM results 342
Feature importance 342
Partial dependence plots 343
SHapley Additive exPlanations 345

How to summarize SHAP values by feature 346
How to use force plots to explain a prediction 347
How to analyze feature interaction 349

Summary 350

Chapter 12: Unsupervised Learning 351
Dimensionality reduction 352

Linear and non-linear algorithms 354
The curse of dimensionality 355
Linear dimensionality reduction 357

Principal Component Analysis 358
Visualizing PCA in 2D 358
The assumptions made by PCA 359
How the PCA algorithm works 360
PCA based on the covariance matrix 360
PCA using Singular Value Decomposition 362
PCA with sklearn 363

Independent Component Analysis 365
ICA assumptions 365
The ICA algorithm 366
ICA with sklearn 366

PCA for algorithmic trading 366
Data-driven risk factors 366
Eigen portfolios 369

Manifold learning 372
t-SNE 374
UMAP 375

Clustering 376
k-Means clustering 377

Evaluating cluster quality 379
Hierarchical clustering 381

Visualization – dendrograms 382
Density-based clustering 383

DBSCAN 383
Hierarchical DBSCAN 384

Gaussian mixture models 384
The expectation-maximization algorithm 385

Hierarchical risk parity 386
Summary 388

Chapter 13: Working with Text Data 389
How to extract features from text data 390

Challenges of NLP 390
The NLP workflow 391

Table of Contents

[xi]

Parsing and tokenizing text data 392
Linguistic annotation 392
Semantic annotation 393
Labeling 393

Use cases 393
From text to tokens – the NLP pipeline 394

NLP pipeline with spaCy and textacy 394
Parsing, tokenizing, and annotating a sentence 395
Batch-processing documents 396
Sentence boundary detection 397
Named entity recognition 397
N-grams 398
spaCy's streaming API 398
Multi-language NLP 398

NLP with TextBlob 400
Stemming 400
Sentiment polarity and subjectivity 401

From tokens to numbers – the document-term matrix 401
The BoW model 401

Measuring the similarity of documents 402
Document-term matrix with sklearn 403

Using CountVectorizer 404
Visualizing vocabulary distribution 404
Finding the most similar documents 405

TfidFTransformer and TfidFVectorizer 406
The effect of smoothing 407
How to summarize news articles using TfidFVectorizer 408

Text Preprocessing - review 408
Text classification and sentiment analysis 408

The Naive Bayes classifier 409
Bayes' theorem refresher 409
The conditional independence assumption 410

News article classification 411
Training and evaluating multinomial Naive Bayes classifier 411

Sentiment analysis 412
Twitter data 412

Multinomial Naive Bayes 412
Comparison with TextBlob sentiment scores 413

Business reviews – the Yelp dataset challenge 413
Benchmark accuracy 414
Multinomial Naive Bayes model 414
One-versus-all logistic regression 415
Combining text and numerical features 415
Multinomial logistic regression 416
Gradient-boosting machine 416

Summary 417

Chapter 14: Topic Modeling 418
Learning latent topics: goals and approaches 419

From linear algebra to hierarchical probabilistic models 420

Table of Contents

[xii]

Latent semantic indexing 420
How to implement LSI using sklearn 422
Pros and cons 424

Probabilistic latent semantic analysis 424
How to implement pLSA using sklearn 425

Latent Dirichlet allocation 427
How LDA works 427

The Dirichlet distribution 428
The generative model 428
Reverse-engineering the process 429

How to evaluate LDA topics 430
Perplexity 430
Topic coherence 430

How to implement LDA using sklearn 431
How to visualize LDA results using pyLDAvis 432
How to implement LDA using gensim 433
Topic modeling for earnings calls 436

Data preprocessing 437
Model training and evaluation 437
Running experiments 438

Topic modeling for Yelp business reviews 439
Summary 440

Chapter 15: Word Embeddings 441
How word embeddings encode semantics 442

How neural language models learn usage in context 442
The Word2vec model – learn embeddings at scale 443

Model objective – simplifying the softmax 444
Automatic phrase detection 445

How to evaluate embeddings – vector arithmetic and analogies 445
How to use pre-trained word vectors 447

GloVe – global vectors for word representation 448
How to train your own word vector embeddings 449
The Skip-Gram architecture in Keras 449

Noise-contrastive estimation 449
The model components 449
Visualizing embeddings using TensorBoard 450

Word vectors from SEC filings using gensim 450
Preprocessing 450

Automatic phrase detection 451
Model training 451

Model evaluation 452
Performance impact of parameter settings 452

Sentiment analysis with Doc2vec 453
Training Doc2vec on yelp sentiment data 454

Create input data 454
Bonus – Word2vec for translation 457

Table of Contents

[xiii]

Summary 457

Chapter 16: Next Steps 458
Key takeaways and lessons learned 459

Data is the single most important ingredient 459
Quality control 459
Data integration 460

Domain expertise helps unlock value in data 460
Feature engineering and alpha factor research 461

ML is a toolkit for solving problems with data 461
Model diagnostics help speed up optimization 462

Making do without a free lunch 462
Managing the bias-variance trade-off 463
Define targeted model objectives 463
The optimization verification test 464

Beware of backtest overfitting 464
How to gain insights from black-box models 464

ML for trading in practice 465
Data management technologies 465

Database systems 466
Big Data technologies – Hadoop and Spark 466

ML tools 467
Online trading platforms 468

Quantopian 468
QuantConnect 469
QuantRocket 469

Conclusion 469

Other Books You May Enjoy 470

Index 473

Preface
The availability of diverse data has increased the demand for expertise in algorithmic
trading strategies. With this book, you will select and apply machine learning (ML) to a
broad range of data sources and create powerful algorithmic strategies.

This book will start by introducing you to essential elements, such as evaluating datasets,
accessing data APIs using Python, using Quandl to access financial data, and managing
prediction errors. We then cover various machine learning techniques and algorithms that
can be used to build and train algorithmic models using pandas, Seaborn, StatsModels, and
sklearn. We will then build, estimate, and interpret AR(p), MA(q), and ARIMA (p, d, q)
models using StatsModels. You will apply Bayesian concepts of prior, evidence, and
posterior, in order to distinguish the concept of uncertainty using PyMC3. We will then
utilize NLTK, sklearn, and spaCy to assign sentiment scores to financial news and classify
documents to extract trading signals. We will learn to design, build, tune, and evaluate feed
forward neural networks, recurrent neural networks (RNNs), and convolutional neural
networks (CNNs), using Keras to design sophisticated algorithms. You will apply transfer
learning to satellite image data to predict economic activity. Finally, we will apply
reinforcement learning for optimal trading results.

By the end of the book, you will be able to adopt algorithmic trading to implement smart
investing strategies.

Who this book is for
The book is for data analysts, data scientists, and Python developers, as well as investment
analysts and portfolio managers working within the finance and investment industry. If
you want to perform efficient algorithmic trading by developing smart investigating
strategies using ML algorithms, this is the book you need! Some understanding of Python
and ML techniques is mandatory.

What this book covers
Chapter 1, Machine Learning for Trading, identifies the focus of the book by outlining how
ML matters in generating and evaluating signals for the design and execution of a trading
strategy. It outlines the strategy process from hypothesis generation and modeling, data
selection, and backtesting to evaluation and execution in a portfolio context, including risk
management.

Preface

[2]

Chapter 2, Market and Fundamental Data, covers sources and working with original
exchange-provided tick and financial reporting data, as well as how to access numerous
open-source data providers that we will rely on throughout this book.

Chapter 3, Alternative Data for Finance, provides categories and criteria to assess the
exploding number of sources and providers. It also demonstrates how to create alternative
data sets by scraping websites, for example to collect earnings call transcripts for use
with natural language processing (NLP) and sentiment analysis algorithms in the second
part of the book.

Chapter 4, Alpha Factor Research, provides a framework for understanding how factors
work and how to measure their performance, for example using the information
coefficient (IC). It demonstrates how to engineer alpha factors from data using Python
libraries offline and on the Quantopian platform. It also introduces the zipline library to
backtest factors and the alphalens library to evaluate their predictive power.

Chapter 5, Strategy Evaluation, introduces how to build, test and evaluate trading strategies
using historical data with zipline offline and on the Quantopian platform. It presents
and demonstrates how to compute portfolio performance and risk metrics using
the pyfolio library. It also addresses how to manage methodological challenges of
strategy backtests and introduce methods to optimize a strategy from a portfolio risk
perspective.

Chapter 6, Machine Learning Workflow, sets the stage by outlining how to formulate, train,
tune and evaluate the predictive performance of ML models as a systematic workflow.

Chapter 7, Linear Models, it shows how to use linear and logistic regression for inference
and prediction and how to use regularization to manage the risk of overfitting. It presents
the Quantopian trading platform and demonstrates how to build factor models and predict
asset prices.

Chapter 8, Time Series Models, covers univariate and multivariate time series, including
vector autoregressive models and cointegration tests, and how they can be applied to pairs
trading strategies.

Chapter 9, Bayesian Machine Learning, presents how to formulate probabilistic models and
how Markov Chain Monte Carlo (MCMC) sampling and Variational Bayes facilitate
approximate inference. It also illustrates how to use PyMC3 for probabilistic programming
to gain deeper insights into parameter and model uncertainty.

Preface

[3]

Chapter 10, Decision Trees and Random Forests, shows how to build, train and tune non-
linear tree-based models for insight and prediction. It introduces tree-based ensemble
models and shows how random forests use bootstrap aggregation to overcome some of the
weaknesses of decision trees. Chapter 11, Gradient Boosting Machines ensemble models and
demonstrates how to use the libraries xgboost, lightgbm, and catboost for high-
performance training and prediction, and reviews in depth how to tune the numerous
hyperparameters.

Chapter 11, Gradient Boosting Machines, demonstrates how to use the
libraries xgboost, lightgbm, and catboost for high-performance training and prediction,
and reviews in depth how to tune the numerous hyperparameters.

Chapter 12, Unsupervised Learning, introduces how to use dimensionality reduction and
clustering for algorithmic trading. It uses principal and independent component analysis to
extract data-driven risk factors. It presents several clustering techniques and demonstrates
the use of hierarchical clustering for asset allocation.

Chapter 13, Working with Text Data, demonstrates how to convert text data into a numerical
format and applies the classification algorithms from part two for sentiment analysis to large
datasets.

Chapter 14, Topic Modeling, applies Bayesian unsupervised learning to extract latent topics
that can summarize a large number of documents and offer more effective ways to explore
text data or use topics as features for a classification model. It demonstrates how to apply
this technique to earnings call transcripts sourced in Chapter 3, Alternative Data for Finance,
and to annual reports filed with the Securities and Exchange Commission (SEC).

Chapter 15, Word Embeddings, uses neural networks to learn state-of-the-art language
features in the form of word vectors that capture semantic context much better than
traditional text features and represent a very promising avenue for extracting trading
signals from text data.

Chapter 16, Next Steps, is a summary of all the previous chapters.

Chapter 17, Deep Learning, introduces Keras, TensorFlow and PyTorch, the most popular
deep learning frameworks that we will use throughout part four. It also presents techniques
for training and tuning, including regularization and provides an overview of common
architectures. To read this chapter, go to the link https:/ / www.packtpub. com/ sites/
default/files/downloads/ Deep_ Learning. pdf.

https://www.packtpub.com/sites/default/files/downloads/Deep_Neural_Networks.pdf
https://www.packtpub.com/sites/default/files/downloads/Deep_Learning.pdf
https://www.packtpub.com/sites/default/files/downloads/Deep_Learning.pdf
https://www.packtpub.com/sites/default/files/downloads/Deep_Learning.pdf
https://www.packtpub.com/sites/default/files/downloads/Deep_Learning.pdf
https://www.packtpub.com/sites/default/files/downloads/Deep_Learning.pdf
https://www.packtpub.com/sites/default/files/downloads/Deep_Learning.pdf
https://www.packtpub.com/sites/default/files/downloads/Deep_Learning.pdf
https://www.packtpub.com/sites/default/files/downloads/Deep_Learning.pdf
https://www.packtpub.com/sites/default/files/downloads/Deep_Learning.pdf
https://www.packtpub.com/sites/default/files/downloads/Deep_Learning.pdf
https://www.packtpub.com/sites/default/files/downloads/Deep_Learning.pdf
https://www.packtpub.com/sites/default/files/downloads/Deep_Learning.pdf
https://www.packtpub.com/sites/default/files/downloads/Deep_Learning.pdf
https://www.packtpub.com/sites/default/files/downloads/Deep_Learning.pdf
https://www.packtpub.com/sites/default/files/downloads/Deep_Learning.pdf
https://www.packtpub.com/sites/default/files/downloads/Deep_Learning.pdf
https://www.packtpub.com/sites/default/files/downloads/Deep_Learning.pdf
https://www.packtpub.com/sites/default/files/downloads/Deep_Learning.pdf
https://www.packtpub.com/sites/default/files/downloads/Deep_Learning.pdf
https://www.packtpub.com/sites/default/files/downloads/Deep_Learning.pdf
https://www.packtpub.com/sites/default/files/downloads/Deep_Learning.pdf
https://www.packtpub.com/sites/default/files/downloads/Deep_Learning.pdf

Preface

[4]

Chapter 18, Recurrent Neural Networks, shows how RNNs are useful for sequence-to-
sequence modeling, including for time series. It demonstrates how RNN capture non-linear
patterns over longer periods. To read this chapter, go to the link https:/ /www. packtpub.
com/sites/default/ files/ downloads/ Recurrent_ Neural_ Networks. pdf.

Chapter 19, Convolutional Neural Networks, covers CNNs that are very powerful for
classification tasks with unstructured data at scale. We will introduce successful
architectural designs, train a CNN on satellite data, for example, to predict economic
activity, and use transfer learning to speed up training. To read this chapter, go to the
link https://www.packtpub. com/ sites/ default/ files/ downloads/ Convolutions_ Neural_
Networks.pdf.

Chapter 20, Autoencoders and Generative Adversarial Nets, addresses unsupervised deep
learning including autoencoders for non-linear compression of high-dimensional data and
Generative Adversarial Networks (GANs), one of the most important recent innovations
to generate synthetic data. To read this chapter, go to the link https:/ /www. packtpub. com/
sites/default/files/ downloads/ Autoencoders_ and_ Generative_ Adversarial_ Nets. pdf.

Chapter 21, Reinforcement Learning, presents reinforcement learning that permits the design
and training of agents that learn to optimize decisions over time in response to their
environment. You will see how build an agent that responds to market signals using the
Open AI gym. To read this chapter, go to the link https:/ /www. packtpub. com/ sites/
default/files/downloads/ Reinforcement_ Learning. pdf.

To get the most out of this book
 All you need for this book is a basic understanding of Python and machine learning
techniques.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

https://www.packtpub.com/sites/default/files/downloads/Recurrent_Neural_Networks.pdf
https://www.packtpub.com/sites/default/files/downloads/Recurrent_Neural_Networks.pdf
https://www.packtpub.com/sites/default/files/downloads/Recurrent_Neural_Networks.pdf
https://www.packtpub.com/sites/default/files/downloads/Recurrent_Neural_Networks.pdf
https://www.packtpub.com/sites/default/files/downloads/Recurrent_Neural_Networks.pdf
https://www.packtpub.com/sites/default/files/downloads/Recurrent_Neural_Networks.pdf
https://www.packtpub.com/sites/default/files/downloads/Recurrent_Neural_Networks.pdf
https://www.packtpub.com/sites/default/files/downloads/Recurrent_Neural_Networks.pdf
https://www.packtpub.com/sites/default/files/downloads/Recurrent_Neural_Networks.pdf
https://www.packtpub.com/sites/default/files/downloads/Recurrent_Neural_Networks.pdf
https://www.packtpub.com/sites/default/files/downloads/Recurrent_Neural_Networks.pdf
https://www.packtpub.com/sites/default/files/downloads/Recurrent_Neural_Networks.pdf
https://www.packtpub.com/sites/default/files/downloads/Recurrent_Neural_Networks.pdf
https://www.packtpub.com/sites/default/files/downloads/Recurrent_Neural_Networks.pdf
https://www.packtpub.com/sites/default/files/downloads/Recurrent_Neural_Networks.pdf
https://www.packtpub.com/sites/default/files/downloads/Recurrent_Neural_Networks.pdf
https://www.packtpub.com/sites/default/files/downloads/Recurrent_Neural_Networks.pdf
https://www.packtpub.com/sites/default/files/downloads/Recurrent_Neural_Networks.pdf
https://www.packtpub.com/sites/default/files/downloads/Recurrent_Neural_Networks.pdf
https://www.packtpub.com/sites/default/files/downloads/Recurrent_Neural_Networks.pdf
https://www.packtpub.com/sites/default/files/downloads/Recurrent_Neural_Networks.pdf
https://www.packtpub.com/sites/default/files/downloads/Recurrent_Neural_Networks.pdf
https://www.packtpub.com/sites/default/files/downloads/Recurrent_Neural_Networks.pdf
https://www.packtpub.com/sites/default/files/downloads/Recurrent_Neural_Networks.pdf
https://www.packtpub.com/sites/default/files/downloads/Recurrent_Neural_Networks.pdf
https://www.packtpub.com/sites/default/files/downloads/Convolutions_Neural_Networks.pdf
https://www.packtpub.com/sites/default/files/downloads/Convolutions_Neural_Networks.pdf
https://www.packtpub.com/sites/default/files/downloads/Convolutions_Neural_Networks.pdf
https://www.packtpub.com/sites/default/files/downloads/Convolutions_Neural_Networks.pdf
https://www.packtpub.com/sites/default/files/downloads/Convolutions_Neural_Networks.pdf
https://www.packtpub.com/sites/default/files/downloads/Convolutions_Neural_Networks.pdf
https://www.packtpub.com/sites/default/files/downloads/Convolutions_Neural_Networks.pdf
https://www.packtpub.com/sites/default/files/downloads/Convolutions_Neural_Networks.pdf
https://www.packtpub.com/sites/default/files/downloads/Convolutions_Neural_Networks.pdf
https://www.packtpub.com/sites/default/files/downloads/Convolutions_Neural_Networks.pdf
https://www.packtpub.com/sites/default/files/downloads/Convolutions_Neural_Networks.pdf
https://www.packtpub.com/sites/default/files/downloads/Convolutions_Neural_Networks.pdf
https://www.packtpub.com/sites/default/files/downloads/Convolutions_Neural_Networks.pdf
https://www.packtpub.com/sites/default/files/downloads/Convolutions_Neural_Networks.pdf
https://www.packtpub.com/sites/default/files/downloads/Convolutions_Neural_Networks.pdf
https://www.packtpub.com/sites/default/files/downloads/Convolutions_Neural_Networks.pdf
https://www.packtpub.com/sites/default/files/downloads/Convolutions_Neural_Networks.pdf
https://www.packtpub.com/sites/default/files/downloads/Convolutions_Neural_Networks.pdf
https://www.packtpub.com/sites/default/files/downloads/Convolutions_Neural_Networks.pdf
https://www.packtpub.com/sites/default/files/downloads/Convolutions_Neural_Networks.pdf
https://www.packtpub.com/sites/default/files/downloads/Convolutions_Neural_Networks.pdf
https://www.packtpub.com/sites/default/files/downloads/Convolutions_Neural_Networks.pdf
https://www.packtpub.com/sites/default/files/downloads/Convolutions_Neural_Networks.pdf
https://www.packtpub.com/sites/default/files/downloads/Convolutions_Neural_Networks.pdf
https://www.packtpub.com/sites/default/files/downloads/Convolutions_Neural_Networks.pdf
https://www.packtpub.com/sites/default/files/downloads/Unsupervised_Deep_Learning.pdf
https://www.packtpub.com/sites/default/files/downloads/Autoencoders_and_Generative_Adversarial_Nets.pdf
https://www.packtpub.com/sites/default/files/downloads/Autoencoders_and_Generative_Adversarial_Nets.pdf
https://www.packtpub.com/sites/default/files/downloads/Autoencoders_and_Generative_Adversarial_Nets.pdf
https://www.packtpub.com/sites/default/files/downloads/Autoencoders_and_Generative_Adversarial_Nets.pdf
https://www.packtpub.com/sites/default/files/downloads/Autoencoders_and_Generative_Adversarial_Nets.pdf
https://www.packtpub.com/sites/default/files/downloads/Autoencoders_and_Generative_Adversarial_Nets.pdf
https://www.packtpub.com/sites/default/files/downloads/Autoencoders_and_Generative_Adversarial_Nets.pdf
https://www.packtpub.com/sites/default/files/downloads/Autoencoders_and_Generative_Adversarial_Nets.pdf
https://www.packtpub.com/sites/default/files/downloads/Autoencoders_and_Generative_Adversarial_Nets.pdf
https://www.packtpub.com/sites/default/files/downloads/Autoencoders_and_Generative_Adversarial_Nets.pdf
https://www.packtpub.com/sites/default/files/downloads/Autoencoders_and_Generative_Adversarial_Nets.pdf
https://www.packtpub.com/sites/default/files/downloads/Autoencoders_and_Generative_Adversarial_Nets.pdf
https://www.packtpub.com/sites/default/files/downloads/Autoencoders_and_Generative_Adversarial_Nets.pdf
https://www.packtpub.com/sites/default/files/downloads/Autoencoders_and_Generative_Adversarial_Nets.pdf
https://www.packtpub.com/sites/default/files/downloads/Autoencoders_and_Generative_Adversarial_Nets.pdf
https://www.packtpub.com/sites/default/files/downloads/Autoencoders_and_Generative_Adversarial_Nets.pdf
https://www.packtpub.com/sites/default/files/downloads/Autoencoders_and_Generative_Adversarial_Nets.pdf
https://www.packtpub.com/sites/default/files/downloads/Autoencoders_and_Generative_Adversarial_Nets.pdf
https://www.packtpub.com/sites/default/files/downloads/Autoencoders_and_Generative_Adversarial_Nets.pdf
https://www.packtpub.com/sites/default/files/downloads/Autoencoders_and_Generative_Adversarial_Nets.pdf
https://www.packtpub.com/sites/default/files/downloads/Autoencoders_and_Generative_Adversarial_Nets.pdf
https://www.packtpub.com/sites/default/files/downloads/Autoencoders_and_Generative_Adversarial_Nets.pdf
https://www.packtpub.com/sites/default/files/downloads/Autoencoders_and_Generative_Adversarial_Nets.pdf
https://www.packtpub.com/sites/default/files/downloads/Autoencoders_and_Generative_Adversarial_Nets.pdf
https://www.packtpub.com/sites/default/files/downloads/Autoencoders_and_Generative_Adversarial_Nets.pdf
https://www.packtpub.com/sites/default/files/downloads/Autoencoders_and_Generative_Adversarial_Nets.pdf
https://www.packtpub.com/sites/default/files/downloads/Autoencoders_and_Generative_Adversarial_Nets.pdf
https://www.packtpub.com/sites/default/files/downloads/Autoencoders_and_Generative_Adversarial_Nets.pdf
https://www.packtpub.com/sites/default/files/downloads/Reinforcement_Learning.pdf
https://www.packtpub.com/sites/default/files/downloads/Reinforcement_Learning.pdf
https://www.packtpub.com/sites/default/files/downloads/Reinforcement_Learning.pdf
https://www.packtpub.com/sites/default/files/downloads/Reinforcement_Learning.pdf
https://www.packtpub.com/sites/default/files/downloads/Reinforcement_Learning.pdf
https://www.packtpub.com/sites/default/files/downloads/Reinforcement_Learning.pdf
https://www.packtpub.com/sites/default/files/downloads/Reinforcement_Learning.pdf
https://www.packtpub.com/sites/default/files/downloads/Reinforcement_Learning.pdf
https://www.packtpub.com/sites/default/files/downloads/Reinforcement_Learning.pdf
https://www.packtpub.com/sites/default/files/downloads/Reinforcement_Learning.pdf
https://www.packtpub.com/sites/default/files/downloads/Reinforcement_Learning.pdf
https://www.packtpub.com/sites/default/files/downloads/Reinforcement_Learning.pdf
https://www.packtpub.com/sites/default/files/downloads/Reinforcement_Learning.pdf
https://www.packtpub.com/sites/default/files/downloads/Reinforcement_Learning.pdf
https://www.packtpub.com/sites/default/files/downloads/Reinforcement_Learning.pdf
https://www.packtpub.com/sites/default/files/downloads/Reinforcement_Learning.pdf
https://www.packtpub.com/sites/default/files/downloads/Reinforcement_Learning.pdf
https://www.packtpub.com/sites/default/files/downloads/Reinforcement_Learning.pdf
https://www.packtpub.com/sites/default/files/downloads/Reinforcement_Learning.pdf
https://www.packtpub.com/sites/default/files/downloads/Reinforcement_Learning.pdf
https://www.packtpub.com/sites/default/files/downloads/Reinforcement_Learning.pdf
https://www.packtpub.com/sites/default/files/downloads/Reinforcement_Learning.pdf
https://www.packtpub.com/sites/default/files/downloads/Reinforcement_Learning.pdf
http://www.packt.com
http://www.packt.com/support

Preface

[5]

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/Hands- On- Machine- Learning- for-Algorithmic- Trading. In case there's
an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ /www. packtpub. com/ sites/ default/ files/
downloads/9781789346411_ ColorImages. pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "The algorithm continues to execute after calling the run_algorithm() function
and returns the same backtest performance DataFrame."

http://www.packt.com
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/9781789346411_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789346411_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789346411_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789346411_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789346411_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789346411_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789346411_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789346411_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789346411_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789346411_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789346411_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789346411_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789346411_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789346411_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789346411_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789346411_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789346411_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789346411_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789346411_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789346411_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789346411_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789346411_ColorImages.pdf

Preface

[6]

A block of code is set as follows:

interesting_times = extract_interesting_date_ranges(returns=returns)
interesting_times['Fall2015'].to_frame('pf') \
 .join(benchmark_rets) \
 .add(1).cumprod().sub(1) \
 .plot(lw=2, figsize=(14, 6), title='Post-Brexit Turmoil')

Bold: Indicates a new term, an important word, or words that you see onscreen.

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

http://www.packt.com/submit-errata
http://authors.packtpub.com/

Preface

[7]

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packt.com/

1
Machine Learning for Trading

Algorithmic trading relies on computer programs that execute algorithms to automate
some, or all, elements of a trading strategy. Algorithms are a sequence of steps or rules to
achieve a goal and can take many forms. In the case of machine learning (ML), algorithms
pursue the objective of learning other algorithms, namely rules, to achieve a target based on
data, such as minimizing a prediction error.

These algorithms encode various activities of a portfolio manager who observes market
transactions and analyzes relevant data to decide on placing buy or sell orders. The
sequence of orders defines the portfolio holdings that, over time, aim to produce returns
that are attractive to the providers of capital, taking into account their appetite for risk.

Ultimately, the goal of active investment management consists in achieving alpha, that is,
returns in excess of the benchmark used for evaluation. The fundamental law of active
management applies the information ratio (IR) to express the value of active management
as the ratio of portfolio returns above the returns of a benchmark, usually an index, to the
volatility of those returns. It approximates the information ratio as the product of the
information coefficient (IC), which measures the quality of forecast as their correlation
with outcomes, and the breadth of a strategy expressed as the square root of the number of
bets.

Hence, the key to generating alpha is forecasting. Successful predictions, in turn, require
superior information or a superior ability to process public information. Algorithms
facilitate optimization throughout the investment process, from asset allocation to idea-
generation, trade execution, and risk management. The use of ML for algorithmic trading,
in particular, aims for more efficient use of conventional and alternative data, with the goal
of producing both better and more actionable forecasts, hence improving the value of active
management.

Machine Learning for Trading Chapter 1

[9]

Historically, algorithmic trading used to be more narrowly defined as the automation of
trade execution to minimize costs as offered by the sell side, but we will take a more
comprehensive perspective since the use of algorithms, and ML, in particular, has come to
impact a broader range of activities from idea generation and alpha factor design to asset
allocation, position sizing, and the testing and evaluation of strategies.

This chapter looks at the bigger picture of how the use of ML has emerged as a critical
source of competitive advantage in the investment industry and where it fits into the
investment process to enable algorithmic trading strategies.

We will be covering the following topics in the chapter:

How this book is organized and who should read it
How ML has come to play a strategic role in algorithmic trading
How to design and execute a trading strategy
How ML adds value to an algorithmic trading strategy

How to read this book
If you are reading this, then you are probably aware that ML has become a strategic
capability in many industries, including the investment industry. The explosion of digital
data that drives much of the rise of ML is having a particularly powerful impact on
investing, which already has a long history of using sophisticated models to process
information. The scope of trading across asset classes implies that a vast range of new,
alternative data may be relevant in addition to the market and fundamental data that used
to be the focus of the analytical efforts.

You may have also come across the insight that the successful application of ML or data
science requires the integration of statistical knowledge, computational skills, and domain
expertise at the individual or team level. In other words, it is essential to ask the right
questions, identify and understand the data that may provide the answers, deploy a broad
range of tools to obtain results, and interpret them in a way that leads to the right
decisions.

Consequently, this book takes an integrated perspective on the application of ML to the
domain of investment and trading. In this section, we will lay out what to expect, how it
goes about achieving its objectives, and what you need to both meet your goals and have
fun in the process.

Machine Learning for Trading Chapter 1

[10]

What to expect
This book aims to equip you with the strategic perspective, conceptual understanding, and
practical tools to add value from applying ML to the trading and investment process. To
this end, it covers ML as an important element in a process rather than a standalone
exercise.

First and foremost, it covers a broad range of supervised, unsupervised, and reinforcement
learning algorithms useful for extracting signals from the diverse data sources relevant to
different asset classes. It introduces a ML workflow and focuses on practical use cases with
relevant data and numerous code examples. However, it also develops the mathematical
and statistical background to facilitate the tuning of an algorithm or the interpretation of
the results.

The book recognizes that investors can extract value from third-party data more than other
industries. As a consequence, it covers not only how to work with market and fundamental
data but also how to source, evaluate, process, and model alternative data sources such as
unstructured text and image data.

It relates the use of ML to research and evaluate alpha factors to quantitative and factor-
based strategies and introduces portfolio management as the context for the deployment of
strategies that combine multiple alpha factors. It also highlights that ML can add value
beyond predictions relevant to individual asset prices, for example to asset allocation
and addresses the risks of false discoveries from using ML with large datasets to develop a
trading strategy.

It should not be a surprise that this book does not provide investment advice or ready-
made trading algorithms. Instead, present building blocks required to identify, evaluate,
and combine datasets that suitable for any given investment objective, select and apply ML
algorithms to this data, and develop and test algorithmic trading strategies based on the
results.

Who should read this book
You should find the book informative if you are an analyst, data scientist, or ML engineer
with an understanding of financial markets and interest in trading strategies. You should
also find value as an investment professional who aims to leverage ML to make better
decisions.

Machine Learning for Trading Chapter 1

[11]

If your background is software and ML, you may be able to just skim or skip some
introductory material on ML. Similarly, if your expertise is in investment, you will likely be
familiar with some or all of the financial context. You will likely find the book most useful
as a survey of key algorithms, building blocks and use cases than for specialized coverage
of a particular algorithm or strategy. However, the book assumes you are interested in
continuing to learn about this very dynamic area. To this end, it references numerous
resources to support your journey towards customized trading strategies that leverage and
build on the fundamental methods and tools it covers.

You should be comfortable using Python 3 and various scientific computing libraries like
numpy, pandas, or scipy and be interested in picking up numerous others along the way.
Some experience with ML and scikit-learn would be helpful, but we briefly cover the basic
workflow and reference various resources to fill gaps or dive deeper.

How the book is organized
The book provides a comprehensive introduction to how ML can add value to the design
and execution of trading strategies. It is organized in four parts that cover different aspects
of the data sourcing and strategy development process, as well as different solutions to
various ML challenges.

Part I – the framework – from data to strategy design
The first part provides a framework for the development of algorithmic trading strategies.
It focuses on the data that power the ML algorithms and strategies discussed in this book,
outlines how ML can be used to derive trading signals, and how to deploy and evaluate
strategies as part of a portfolio.

The remainder of this chapter summarizes how and why ML became central to investment,
describes the trading process and outlines how ML can add value. Chapter 2, Market and
Fundamental Data, covers sources and working with original exchange-provided tick and
financial reporting data, as well as how to access numerous open-source data providers
that we will rely on throughout this book.

Chapter 3, Alternative Data for Finance, provides categories and criteria to assess the
exploding number of sources and providers. It also demonstrates how to create alternative
data sets by scraping websites, for example to collect earnings call transcripts for use with
natural language processing (NLP) and sentiment analysis algorithms in the second part of
the book.

Machine Learning for Trading Chapter 1

[12]

Chapter 4, Alpha Factor Research, provides a framework for understanding how factors
work and how to measure their performance, for example using the information
coefficient (IC). It demonstrates how to engineer alpha factors from data using Python
libraries offline and on the Quantopian platform. It also introduces the zipline library to
backtest factors and the alphalens library to evaluate their predictive power.

Chapter 5, Strategy Evaluation, introduces how to build, test and evaluate trading strategies
using historical data with zipline offline and on the Quantopian platform. It presents and
demonstrates how to compute portfolio performance and risk metrics using
the pyfolio library. It also addresses how to manage methodological challenges of
strategy backtests and introduce methods to optimize a strategy from a portfolio risk
perspective.

Part 2 – ML fundamentals
The second part covers the fundamental supervised and unsupervised learning algorithms
and illustrates their application to trading strategies. It also introduces the Quantopian
platform where you can leverage and combine the data and ML techniques developed in
this book to implement algorithmic strategies that execute trades in live markets.

Chapter 6, The Machine Learning Process, sets the stage by outlining how to formulate, train,
tune and evaluate the predictive performance of ML models as a systematic workflow.

Chapter 7, Linear Models, it shows how to use linear and logistic regression for inference
and prediction and how to use regularization to manage the risk of overfitting. It presents
the Quantopian trading platform and demonstrates how to build factor models and predict
asset prices.

Chapter 8, Time Series Models, covers univariate and multivariate time series, including
vector autoregressive models and cointegration tests, and how they can be applied to pairs
trading strategies. Chapter 9, Bayesian Machine Learning, presents how to formulate
probabilistic models and how Markov Chain Monte Carlo (MCMC) sampling and
Variational Bayes facilitate approximate inference. It also illustrates how to use PyMC3
for probabilistic programming to gain deeper insights into parameter and model
uncertainty.

Machine Learning for Trading Chapter 1

[13]

Chapter 10, Decision Trees and Random Forests, shows how to build, train and tune non-
linear tree-based models for insight and prediction. It introduces tree-based ensemble
models and shows how random forests use bootstrap aggregation to overcome some of the
weaknesses of decision trees. Chapter 11, Gradient Boosting Machines ensemble models and
demonstrates how to use the libraries xgboost, lightgbm, and catboost for high-
performance training and prediction, and reviews in depth how to tune the numerous
hyperparameters.

Chapter 12, Unsupervised Learning introduces how to use dimensionality reduction and
clustering for algorithmic trading. It uses principal and independent component analysis to
extract data-driven risk factors. It presents several clustering techniques and demonstrates
the use of hierarchical clustering for asset allocation.

Part 3 – natural language processing
Part three focuses on text data and introduces state-of-the-art unsupervised learning
techniques to extract high-quality signals from this key source of alternative data.

Chapter 13, Working with Text Data, demonstrates how to convert text data into a numerical
format and applies the classification algorithms from part two for sentiment analysis to large
datasets. Chapter 14, Topic Modeling, applies Bayesian unsupervised learning to extract
latent topics that can summarize a large number of documents and offer more effective
ways to explore text data or use topics as features for a classification model. It demonstrates
how to apply this technique to earnings call transcripts sourced in Chapter 3, Alternative
Data for Finance, and to annual reports filed with the Securities and Exchange Commission
(SEC).

Chapter 15, Word Embeddings, uses neural networks to learn state-of-the-art language
features in the form of word vectors that capture semantic context much better than
traditional text features and represent a very promising avenue for extracting trading
signals from text data.

Part 4 – deep and reinforcement learning
Part 4 introduces deep learning and reinforcement learning.

Chapter 17, Deep Learning, introduces Keras, TensorFlow and PyTorch, the most
popular deep learning frameworks and illustrates how to train and tune various
architectures.
Chapter 18, Recurrent Neural Networks, presents RNNs for time series
data

https://www.packtpub.com/sites/default/files/downloads/Deep_Learning.pdf
https://www.packtpub.com/sites/default/files/downloads/Recurrent_Neural_Networks.pdf
https://www.packtpub.com/sites/default/files/downloads/Recurrent_Neural_Networks.pdf
https://www.packtpub.com/sites/default/files/downloads/Recurrent_Neural_Networks.pdf
https://www.packtpub.com/sites/default/files/downloads/Recurrent_Neural_Networks.pdf
https://www.packtpub.com/sites/default/files/downloads/Recurrent_Neural_Networks.pdf

Machine Learning for Trading Chapter 1

[14]

Chapter 19, Convolutional Neural Networks, illustrates how to use CNNs with
image and text data
Chapter 20, Autoencoders and Generative Adversarial Nets, shows how to use deep
neural networks for unsupervised learning with autoencoders and presents
GANs that produce synthetic data
Chapter 21, Reinforcement Learning, demonstrates the use of reinforcement
learning to build dynamic agents that learn a policy function based on rewards
using the OpenAI gym platform

What you need to succeed
The book content revolves around the application of ML algorithms to different datasets.
Significant additional content is hosted on GitHub to facilitate review and experiments with
the examples discussed in the book. It contains additional detail and instructions as well as
numerous references.

Data sources
We will use freely available historical data from market, fundamental and alternative
sources. Chapter 2, Market and Fundamental Data and Chapter 3, Alternative Data for
Finance cover characteristics and access to these data sources and introduce key providers
that we will use throughout the book. The companion GitHub repository (see beneath)
contains instructions on how to obtain or create some of the datasets that we will use
throughout and includes some smaller datasets.

A few sample data sources that we will source and work with include, but are not limited
to:

NASDAQ ITCH order book data
Electronic Data Gathering, Analysis, and Retrieval (EDGAR) SEC filings
Earnings call transcripts from Seeking Alpha
Quandl daily prices and other data points for over 3,000 US stocks
Various macro fundamental data from the Federal Reserve and others
Large Yelp business reviews and Twitter datasets
Image data on oil tankers

Some of the data is several GB large (e.g. the NASDAQ and SEC filings). The notebooks
indicate when that is the case.

https://www.packtpub.com/sites/default/files/downloads/Convolutions_Neural_Networks.pdf
https://www.packtpub.com/sites/default/files/downloads/Autoencoders_and_Generative_Adversarial_Nets.pdf
https://www.packtpub.com/sites/default/files/downloads/Reinforcement_Learning.pdf

Machine Learning for Trading Chapter 1

[15]

GitHub repository
The GitHub repository contains Jupyter Notebooks that illustrate many of the concepts and
models in more detail. The Notebooks are referenced throughout the book where
used. Each chapter has its own directory with separate instructions where needed, as well
as reference specific to the chapter's content.

Jupyter Notebooks is a great tool for creating reproducible computational narratives, and it
enables users to create and share documents that combine live code with narrative text,
mathematical equations, visualizations, interactive controls, and other rich output. It also
provides building blocks for interactive computing with data, such as a file browser,
terminals, and a text editor.

You can find the code files placed at:
https:/ /github. com/ PacktPublishing/ Hands- On-Machine- Learning-
for-Algorithmic- Trading.

Python libraries
The book uses Python 3.7, and recommends miniconda to install the conda package
manager and to create a conda environment to install the the requisite libraries. To this
end, the GitHub repo contains an environment.yml file. Please refer to the installation
instructions referenced in the GitHub repo's README file.

The rise of ML in the investment industry
The investment industry has evolved dramatically over the last several decades and
continues to do so amid increased competition, technological advances, and a challenging
economic environment. This section will review several key trends that have shaped the
investment environment in general, and the context for algorithmic trading more
specifically, and related themes that will recur throughout this book.

The trends that have propelled algorithmic trading and ML to current prominence include:

Changes in the market microstructure, such as the spread of electronic trading
and the integration of markets across asset classes and geographies
The development of investment strategies framed in terms of risk-factor
exposure, as opposed to asset classes

https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading

Machine Learning for Trading Chapter 1

[16]

The revolutions in computing power, data-generation and management, and
analytic methods
The outperformance of the pioneers in algorithmic traders relative to human,
discretionary investors

In addition, the financial crises of 2001 and 2008 have affected how investors approach
diversification and risk management and have given rise to low-cost passive investment
vehicles in the form of exchange-traded funds (ETFs). Amid low yield and low volatility
after the 2008 crisis, cost-conscious investors shifted $2 trillion from actively-managed
mutual funds into passively managed ETFs. Competitive pressure is also reflected in lower
hedge fund fees that dropped from the traditional 2% annual management fee and 20%
take of profits to an average of 1.48% and 17.4%, respectively, in 2017.

From electronic to high-frequency trading
Electronic trading has advanced dramatically in terms of capabilities, volume, coverage of
asset classes, and geographies since networks started routing prices to computer terminals
in the 1960s.

Equity markets have led this trend worldwide. The 1997 order-handling rules by the
SEC introduced competition to exchanges through electronic communication networks
(ECN). ECNs are automated Alternative Trading Systems (ATS) that match buy-and-sell
orders at specified prices, primarily for equities and currencies and are registered as broker-
dealers. It allows significant brokerages and individual traders in different geographic
locations to trade directly without intermediaries, both on exchanges and after hours. Dark
pools are another type of ATS that allow investors to place orders and trade without
publicly revealing their information, as in the order book maintained by an exchange. Dark
pools have grown since a 2007 SEC ruling, are often housed within large banks, and are
subject to SEC regulation.

With the rise of electronic trading, algorithms for cost-effective execution have developed
rapidly and adoption has spread quickly from the sell side to the buy side and across asset
classes. Automated trading emerged around 2000 as a sell-side tool aimed at cost-effective
trade execution that spread orders over time to limit the market impact. These tools spread
to the buy side and became increasingly sophisticated by taking into account, for example,
transaction costs and liquidity, as well as short-term price and volume forecasts.

Direct Market Access (DMA) gives a trader greater control over execution by allowing it to
send orders directly to the exchange using the infrastructure and market participant
identification of a broker who is a member of an exchange. Sponsored access removes pre-
trade risk controls by the brokers and forms the basis for high-frequency trading (HFT).

Machine Learning for Trading Chapter 1

[17]

HFT refers to automated trades in financial instruments that are executed with extremely
low latency in the microsecond range and where participants hold positions for very short
periods. The goal is to detect and exploit inefficiencies in the market microstructure, the
institutional infrastructure of trading venues. HFT has grown substantially over the past
ten years and is estimated to make up roughly 55% of trading volume in US equity markets
and about 40% in European equity markets. HFT has also grown in futures markets to
roughly 80% of foreign-exchange futures volumes and two-thirds of both interest rate and
Treasury 10 year futures volumes (FAS 2016).

HFT strategies aim to earn small profits per trade using passive or aggressive strategies.
Passive strategies include arbitrage trading to profit from very small price differentials for
the same asset, or its derivatives, traded on different venues. Aggressive strategies include
order anticipation or momentum ignition. Order anticipation, also known as liquidity
detection, involves algorithms that submit small exploratory orders to detect hidden
liquidity from large institutional investors and trade ahead of a large order to benefit from
subsequent price movements. Momentum ignition implies an algorithm executing and
canceling a series of orders to spoof other HFT algorithms into buying (or selling) more
aggressively and benefit from the resulting price changes.

Regulators have expressed concern over the potential link between certain aggressive HFT
strategies and increased market fragility and volatility, such as that experienced during the
May 2010 Flash Crash, the October 2014 Treasury Market volatility, and the sudden crash
by over 1,000 points of the Dow Jones Industrial Average on August 24, 2015. At the same
time, market liquidity has increased with trading volumes due to the presence of HFT,
which has lowered overall transaction costs.

The combination of reduced trading volumes amid lower volatility and rising costs of the
technology and access to both data and trading venues has led to financial pressure.
Aggregate HFT revenues from US stocks have been estimated to drop beneath $1 billion for
the first time since 2008, down from $7.9 billion in 2009.

This trend has led to industry consolidation with various acquisitions by, for example, the
largest listed proprietary trading firm Virtu Financial, and shared infrastructure
investments, such as the new Go West ultra-low latency route between Chicago and Tokyo.
Simultaneously, startups such as Alpha Trading Lab make HFT trading infrastructure and
data available to democratize HFT by crowdsourcing algorithms in return for a share of the
profits.

Machine Learning for Trading Chapter 1

[18]

Factor investing and smart beta funds
The return provided by an asset is a function of the uncertainty or risk associated with the
financial investment. An equity investment implies, for example, assuming a company's
business risk, and a bond investment implies assuming default risk.

To the extent that specific risk characteristics predict returns, identifying and forecasting
the behavior of these risk factors becomes a primary focus when designing an investment
strategy. It yields valuable trading signals and is the key to superior active-management
results. The industry's understanding of risk factors has evolved very substantially over
time and has impacted how ML is used for algorithmic trading.

Modern Portfolio Theory (MPT) introduced the distinction between idiosyncratic and
systematic sources of risk for a given asset. Idiosyncratic risk can be eliminated through
diversification, but systematic risk cannot. In the early 1960s, the Capital Asset Pricing
Model (CAPM) identified a single factor driving all asset returns: the return on the market
portfolio in excess of T-bills. The market portfolio consisted of all tradable securities,
weighted by their market value. The systematic exposure of an asset to the market is
measured by beta, which is the correlation between the returns of the asset and the market
portfolio.

The recognition that the risk of an asset does not depend on the asset in isolation, but rather
how it moves relative to other assets, and the market as a whole, was a major conceptual
breakthrough. In other words, assets do not earn a risk premium because of their specific,
idiosyncratic characteristics, but because of their exposure to underlying factor risks.

However, a large body of academic literature and long investing experience have
disproved the CAPM prediction that asset risk premiums depend only on their exposure to
a single factor measured by the asset's beta. Instead, numerous additional risk factors have
since been discovered. A factor is a quantifiable signal, attribute, or any variable that has
historically correlated with future stock returns and is expected to remain correlated in
future.

These risk factors were labeled anomalies since they contradicted the Efficient Market
Hypothesis (EMH), which sustained that market equilibrium would always price securities
according to the CAPM so that no other factors should have predictive power. The
economic theory behind factors can be either rational, where factor risk premiums
compensate for low returns during bad times, or behavioral, where agents fail to arbitrage
away excess returns.

Machine Learning for Trading Chapter 1

[19]

Well-known anomalies include the value, size, and momentum effects that help predict
returns while controlling for the CAPM market factor. The size effect rests on small firms
systematically outperforming large firms, discovered by Banz (1981) and Reinganum
(1981). The value effect (Basu 1982) states that firms with low valuation metrics outperform.
It suggests that firms with low price multiples, such as the price-to-earnings or the price-to-
book ratios, perform better than their more expensive peers (as suggested by the inventors
of value investing, Benjamin Graham and David Dodd, and popularized by Warren Buffet).

The momentum effect, discovered in the late 1980s by, among others, Clifford Asness, the
founding partner of AQR, states that stocks with good momentum, in terms of recent 6-12
month returns, have higher returns going forward than poor momentum stocks with
similar market risk. Researchers also found that value and momentum factors explain
returns for stocks outside the US, as well as for other asset classes, such as bonds,
currencies, and commodities, and additional risk factors.

In fixed income, the value strategy is called riding the yield curve and is a form of the
duration premium. In commodities, it is called the roll return, with a positive return for an
upward-sloping futures curve and a negative return otherwise. In foreign exchange, the
value strategy is called carry.

There is also an illiquidity premium. Securities that are more illiquid trade at low prices
and have high average excess returns, relative to their more liquid counterparts. Bonds
with higher default risk tend to have higher returns on average, reflecting a credit risk
premium. Since investors are willing to pay for insurance against high volatility when
returns tend to crash, sellers of volatility protection in options markets tend to earn high
returns.

Multifactor models define risks in broader and more diverse terms than just the market
portfolio. In 1976, Stephen Ross proposed arbitrage pricing theory, which asserted that
investors are compensated for multiple systematic sources of risk that cannot be diversified
away. The three most important macro factors are growth, inflation, and volatility, in
addition to productivity, demographic, and political risk. In 1992, Eugene Fama and
Kenneth French combined the equity risk factors' size and value with a market factor into a
single model that better explained cross-sectional stock returns. They later added a model
that also included bond risk factors to simultaneously explain returns for both asset classes.

A particularly attractive aspect of risk factors is their low or negative correlation. Value and
momentum risk factors, for instance, are negatively correlated, reducing the risk and
increasing risk-adjusted returns above and beyond the benefit implied by the risk factors.
Furthermore, using leverage and long-short strategies, factor strategies can be combined
into market-neutral approaches. The combination of long positions in securities exposed to
positive risks with underweight or short positions in the securities exposed to negative
risks allows for the collection of dynamic risk premiums.

Machine Learning for Trading Chapter 1

[20]

As a result, the factors that explained returns above and beyond the CAPM were
incorporated into investment styles that tilt portfolios in favor of one or more factors, and
assets began to migrate into factor-based portfolios. The 2008 financial crisis
underlined how asset-class labels could be highly misleading and create a false sense of
diversification when investors do not look at the underlying factor risks, as asset classes
came crashing down together.

Over the past several decades, quantitative factor investing has evolved from a simple
approach based on two or three styles to multifactor smart or exotic beta products. Smart
beta funds have crossed $1 trillion AUM in 2017, testifying to the popularity of the hybrid
investment strategy that combines active and passive management. Smart beta funds take a
passive strategy but modify it according to one or more factors, such as cheaper stocks or
screening them according to dividend payouts, to generate better returns. This growth has
coincided with increasing criticism of the high fees charged by traditional active managers
as well as heightened scrutiny of their performance.

The ongoing discovery and successful forecasting of risk factors that, either individually or
in combination with other risk factors, significantly impact future asset returns across asset
classes is a key driver of the surge in ML in the investment industry and will be a key
theme throughout this book.

Algorithmic pioneers outperform humans at scale
The track record and growth of Assets Under Management (AUM) of firms that
spearheaded algorithmic trading has played a key role in generating investor interest and
subsequent industry efforts to replicate their success. Systematic funds differ from HFT in
that trades may be held significantly longer while seeking to exploit arbitrage opportunities
as opposed to advantages from sheer speed.

Systematic strategies that mostly or exclusively rely on algorithmic decision-making were
most famously introduced by mathematician James Simons who founded Renaissance
Technologies in 1982 and built it into the premier quant firm. Its secretive Medallion Fund,
which is closed to outsiders, has earned an estimated annualized return of 35% since 1982.

DE Shaw, Citadel, and Two Sigma, three of the most prominent quantitative hedge funds
that use systematic strategies based on algorithms, rose to the all-time top-20 performers for
the first time in 2017 in terms of total dollars earned for investors, after fees, and since
inception.

Machine Learning for Trading Chapter 1

[21]

DE Shaw, founded in 1988 with $47 billion AUM in 2018 joined the list at number 3. Citadel
started in 1990 by Kenneth Griffin, manages $29 billion and ranks 5, and Two Sigma started
only in 2001 by DE Shaw alumni John Overdeck and David Siegel, has grown from $8
billion AUM in 2011 to $52 billion in 2018. Bridgewater started in 1975 with over
$150 billion AUM, continues to lead due to its Pure Alpha Fund that also incorporates
systematic strategies.

Similarly, on the Institutional Investors 2017 Hedge Fund 100 list, five of the top six firms
rely largely or completely on computers and trading algorithms to make investment
decisions—and all of them have been growing their assets in an otherwise challenging
environment. Several quantitatively-focused firms climbed several ranks and in some cases
grew their assets by double-digit percentages. Number 2-ranked Applied Quantitative
Research (AQR) grew its hedge fund assets 48% in 2017 to $69.7 billion and managed
$187.6 billion firm-wide.

Among all hedge funds, ranked by compounded performance over the last three years, the
quant-based funds run by Renaissance Technologies achieved ranks 6 and 24, Two Sigma
rank 11, D.E. Shaw no 18 and 32, and Citadel ranks 30 and 37. Beyond the top performers,
algorithmic strategies have worked well in the last several years. In the past five years,
quant-focused hedge funds gained about 5.1% per year while the average hedge fund rose
4.3% per year in the same period.

ML driven funds attract $1 trillion AUM
The familiar three revolutions in computing power, data, and ML methods have made the
adoption of systematic, data-driven strategies not only more compelling and cost-effective
but a key source of competitive advantage.

As a result, algorithmic approaches are not only finding wider application in the hedge-
fund industry that pioneered these strategies but across a broader range of asset managers
and even passively-managed vehicles such as ETFs. In particular, predictive analytics using
machine learning and algorithmic automation play an increasingly prominent role in all
steps of the investment process across asset classes, from idea-generation and research to
strategy formulation and portfolio construction, trade execution, and risk management.

Estimates of industry size vary because there is no objective definition of a quantitative or
algorithmic fund, and many traditional hedge funds or even mutual funds and ETFs are
introducing computer-driven strategies or integrating them into a discretionary
environment in a human-plus-machine approach.

Machine Learning for Trading Chapter 1

[22]

Morgan Stanley estimated in 2017 that algorithmic strategies have grown at 15% per year
over the past six years and control about $1.5 trillion between hedge funds, mutual funds,
and smart beta ETFs. Other reports suggest the quantitative hedge fund industry was about
to exceed $1 trillion AUM, nearly doubling its size since 2010 amid outflows from
traditional hedge funds. In contrast, total hedge fund industry capital hit $3.21 trillion
according to the latest global Hedge Fund Research report.

The market research firm Preqin estimates that almost 1,500 hedge funds make a majority
of their trades with help from computer models. Quantitative hedge funds are now
responsible for 27% of all US stock trades by investors, up from 14% in 2013. But many use
data scientists—or quants—which, in turn, use machines to build large statistical models
(WSJ).

In recent years, however, funds have moved toward true ML, where artificially-intelligent
systems can analyze large amounts of data at speed and improve themselves through such
analyses. Recent examples include Rebellion Research, Sentient, and Aidyia, which rely on
evolutionary algorithms and deep learning to devise fully-automatic Artificial Intelligence
(AI)-driven investment platforms.

From the core hedge fund industry, the adoption of algorithmic strategies has spread to
mutual funds and even passively-managed exchange-traded funds in the form of smart
beta funds, and to discretionary funds in the form of quantamental approaches.

The emergence of quantamental funds
Two distinct approaches have evolved in active investment management: systematic (or
quant) and discretionary investing. Systematic approaches rely on algorithms for a
repeatable and data-driven approach to identify investment opportunities across many
securities; in contrast, a discretionary approach involves an in-depth analysis of a smaller
number of securities. These two approaches are becoming more similar as fundamental
managers take more data-science-driven approaches.

Even fundamental traders now arm themselves with quantitative techniques, accounting
for $55 billion of systematic assets, according to Barclays. Agnostic to specific companies,
quantitative funds trade patterns and dynamics across a wide swath of securities. Quants
now account for about 17% of total hedge fund assets, data compiled by Barclays shows.

Point72 Asset Management, with $12 billion in assets, has been shifting about half of its
portfolio managers to a man-plus-machine approach. Point72 is also investing tens of
millions of dollars into a group that analyzes large amounts of alternative data and passes
the results on to traders.

https://www.wsj.com/articles/the-quants-run-wall-street-now-1495389108

Machine Learning for Trading Chapter 1

[23]

Investments in strategic capabilities
Rising investments in related capabilities—technology, data and, most importantly, skilled
humans—highlight how significant algorithmic trading using ML has become for
competitive advantage, especially in light of the rising popularity of passive, indexed
investment vehicles, such as ETFs, since the 2008 financial crisis.

Morgan Stanley noted that only 23% of its quant clients say they are not considering using
or not already using ML, down from 44% in 2016.

Guggenheim Partners LLC built what it calls a supercomputing cluster for $1 million at the
Lawrence Berkeley National Laboratory in California to help crunch numbers for
Guggenheim's quant investment funds. Electricity for the computers costs another $1
million a year.

AQR is a quantitative investment group that relies on academic research to identify and
systematically trade factors that have, over time, proven to beat the broader market. The
firm used to eschew the purely computer-powered strategies of quant peers such as
Renaissance Technologies or DE Shaw. More recently, however, AQR has begun to seek
profitable patterns in markets using ML to parse through novel datasets, such as satellite
pictures of shadows cast by oil wells and tankers.

The leading firm BlackRock, with over $5 trillion AUM, also bets on algorithms to beat
discretionary fund managers by heavily investing in SAE, a systematic trading firm it
acquired during the financial crisis. Franklin Templeton bought Random Forest Capital, a
debt-focused, data-led investment company for an undisclosed amount, hoping that its
technology can support the wider asset manager.

ML and alternative data
Hedge funds have long looked for alpha through informational advantage and the ability
to uncover new uncorrelated signals. Historically, this included things such as proprietary
surveys of shoppers, or voters ahead of elections or referendums. Occasionally, the use of
company insiders, doctors, and expert networks to expand knowledge of industry trends or
companies crosses legal lines: a series of prosecutions of traders, portfolio managers, and
analysts for using insider information after 2010 has shaken the industry.

In contrast, the informational advantage from exploiting conventional and alternative data
sources using ML is not related to expert and industry networks or access to corporate
management, but rather the ability to collect large quantities of data and analyze them in
real-time.

Machine Learning for Trading Chapter 1

[24]

Three trends have revolutionized the use of data in algorithmic trading strategies and may
further shift the investment industry from discretionary to quantitative styles:

The exponential increase in the amount of digital data
The increase in computing power and data storage capacity at lower cost
The advances in ML methods for analyzing complex datasets

Conventional data includes economic statistics, trading data, or corporate reports.
Alternative data is much broader and includes sources such as satellite images, credit card
sales, sentiment analysis, mobile geolocation data, and website scraping, as well as the
conversion of data generated in the ordinary course of business into valuable intelligence. It
includes, in principle, any data source containing trading signals that can be extracted
using ML.

For instance, data from an insurance company on sales of new car-insurance
policies proxies not only the volumes of new car sales but can be broken down into brands
or geographies. Many vendors scrape websites for valuable data, ranging from app
downloads and user reviews to airlines and hotel bookings. Social media sites can also be
scraped for hints on consumer views and trends.

Typically, the datasets are large and require storage, access, and analysis using scalable
data solutions for parallel processing, such as Hadoop and Spark; there are more than 1
billion websites with more than 10 trillion individual web pages, with 500 exabytes (or 500
billion gigabytes) of data, according to Deutsche Bank. And more than 100 million websites
are added to the internet every year.

Real-time insights into a company's prospects, long before their results are released, can be
gleaned from a decline in job listings on its website, the internal rating of its chief executive
by employees on the recruitment site Glassdoor, or a dip in the average price of clothes on
its website. This could be combined with satellite images of car parks and geolocation data
from mobile phones that indicate how many people are visiting stores. On the other hand,
strategic moves can be learned from a jump in job postings for specific functional areas or
in certain geographies.

Among the most valuable sources is data that directly reveals consumer expenditures, with
credit card information as a primary source. This data only offers a partial view of sales
trends, but can offer vital insights when combined with other data. Point72, for instance,
analyzes 80 million credit card transactions every day. We will explore the various sources,
their use cases, and how to evaluate them in detail in Chapter 3, Alternative Data for
Finance.

Machine Learning for Trading Chapter 1

[25]

Investment groups have more than doubled their spending on alternative sets and data
scientists in the past two years, as the asset management industry has tried to reinvigorate
its fading fortunes. In December 2018, there were 375 alternative data providers listed on
alternativedata.org (sponsored by provider Yipit).

Asset managers last year spent a total of $373 million on datasets and hiring new
employees to parse them, up 60% on 2016, and will probably spend a total of $616 million
this year, according to a survey of investors by alternativedata.org. It forecasts that
overall expenditures will climb to over $1 billion by 2020. Some estimates are even higher:
Optimus, a consultancy, estimates that investors are spending about $5 billion per year on
alternative data, and expects the industry to grow 30% per year over the coming years.

As competition for valuable data sources intensifies, exclusivity arrangements are a key
feature of data-source contracts, to maintain an informational advantage. At the same
time, privacy concerns are mounting and regulators have begun to start looking at the
currently largely unregulated data-provider industry.

Crowdsourcing of trading algorithms
More recently, several algorithmic trading firms have begun to offer investment platforms
that provide access to data and a programming environment to crowd-source risk factors
that become part of an investment strategy, or entire trading algorithms. Key examples
include WorldQuant, Quantopian, and, launched in 2018, Alpha Trading Labs.

WorldQuant managed more than $5 billion for Millennium Management with $34.6 billion
AUM since 2007 and announced in 2018 that it would launch its first public fund. It
employs hundreds of scientists and many more part-time workers around the world in its
alpha factory that organizes the investment process as a quantitative assembly line. This
factory claims to have produced 4 million successfully tested alpha factors for inclusion in
more complex trading strategies and is aiming for 100 million. Each alpha factor is an
algorithm that seeks to predict a future asset price change. Other teams then combine alpha
factors into strategies and strategies into portfolios, allocate funds between portfolios, and
manage risk while avoiding strategies that cannibalize each other.

Design and execution of a trading strategy
ML can add value at multiple steps in the lifecycle of a trading strategy, and relies on key
infrastructure and data resources. Hence, this book aims to addresses how ML techniques
fit into the broader process of designing, executing, and evaluating strategies.

https://alternativedata.org/
https://alternativedata.org/

Machine Learning for Trading Chapter 1

[26]

An algorithmic trading strategy is driven by a combination of alpha factors that transform
one or several data sources into signals that in turn predict future asset returns and trigger
buy or sell orders. Chapter 2, Market and Fundamental Data and Chapter 3, Alternative Data
for Finance cover the sourcing and management of data, the raw material and the single
most important driver of a successful trading strategy.

Chapter 4, Alpha Factor Research outlines a methodologically sound process to manage the
risk of false discoveries that increases with the amount of data. Chapter 5, Strategy
Evaluation provides the context for the execution and performance measurement of a
trading strategy:

Let's take a brief look at these steps, which we will discuss in depth in the following
chapters.

Sourcing and managing data
The dramatic evolution of data in terms of volume, variety, and velocity is both a necessary
condition for and driving force of the application of ML to algorithmic trading. The
proliferating supply of data requires active management to uncover potential value,
including the following steps:

Identify and evaluate market, fundamental, and alternative data sources1.
containing alpha signals that do not decay too quickly.
Deploy or access cloud-based scalable data infrastructure and analytical tools like2.
Hadoop or Spark Sourcing to facilitate fast, flexible data access
Carefully manage and curate data to avoid look-ahead bias by adjusting it to the3.
desired frequency on a point-in-time (PIT) basis. This means that data may only
reflect information available and know at the given time. ML algorithms trained
on distorted historical data will almost certainly fail during live trading.

Machine Learning for Trading Chapter 1

[27]

Alpha factor research and evaluation
Alpha factors are designed to extract signals from data to predict asset returns for a given
investment universe over the trading horizon. A factor takes on a single value for each asset
when evaluated, but may combine one or several input variables. The process involves the
steps outlined in the following figure:

The Research phase of the trading strategy workflow includes the design, evaluation, and
combination of alpha factors. ML plays a large role in this process because the complexity
of factors has increased as investors react to both the signal decay of simpler factors and the
much richer data available today.

The development of predictive alpha factors requires the exploration of relationships
between input data and the target returns, creative feature-engineering, and the testing and
fine-tuning of data transformations to optimize the predictive power of the input.

The data transformations range from simple non-parametric rankings to complex ensemble
models or deep neural networks, depending on the amount of signal in the inputs and the
complexity of the relationship between the inputs and the target. Many of the simpler
factors have emerged from academic research and have been increasingly widely used in
the industry over the last several decades.

To minimize the risks of false discoveries due to data mining and because finance has been
subject to decades of research that has resulted in several Nobel prizes, investors prefer to
rely on factors that align with theories about financial markets and investor behavior.
Laying out these theories is beyond the scope of this book, but the references will highlight
avenues to dive deeper into this important framing aspect of algorithmic trading strategies.

To validate the signal content of an alpha factor candidate, it is necessary to obtain a robust
estimate of its predictive power in environments representative of the market regime
during which the factor would be used in a strategy. Reliable estimates require avoiding
numerous methodological and practical pitfalls, including the use of data that induces
survivorship or look-ahead biases by not reflecting realistic PIT information, or the failure
to correct for bias due to multiple tests on the same data.

Machine Learning for Trading Chapter 1

[28]

Signals derived from alpha factors are often individually weak, but sufficiently powerful
when combined with other factors or data sources, for example, to modulate the signal as a
function of the market or economic context.

Portfolio optimization and risk management
Alpha factors emit entry and exit signals that lead to buy or sell orders, and order execution
results in portfolio holdings. The risk profiles of individual positions interact to create a
specific portfolio risk profile. Portfolio management involves the optimization of position
weights to achieve the desired portfolio risk and return a profile that aligns with the overall
investment objectives. This process is highly dynamic to incorporate continuously-evolving
market data.

The execution of trades during this process requires balancing the trader's dilemma: fast
execution tends to drive up costs due to market impact, whereas slow execution may create
implementation shortfall when the realized price deviates from the price that prevailed
when the decision was taken. Risk management occurs throughout the portfolio-
management process to adjust holdings or assume hedges, depending on observed or
predicted changes in the market environment that impact the portfolio risk profile.

Strategy backtesting
The incorporation of an investment idea into an algorithmic strategy requires extensive
testing with a scientific approach that attempts to reject the idea based on its performance
in alternative out-of-sample market scenarios. Testing may involve simulated data to
capture scenarios deemed possible but not reflected in historic data.

A strategy-backtesting engine needs to simulate the execution of a strategy realistically to
achieve unbiased performance and risk estimates. In addition to the potential biases
introduced by the data or a flawed use of statistics, the backtest engine needs to accurately
represent the practical aspects of trade-signal evaluation, order placement, and execution in
line with market conditions.

Machine Learning for Trading Chapter 1

[29]

ML and algorithmic trading strategies
Quantitative strategies have evolved and become more sophisticated in three waves:

In the 1980s and 1990s, signals often emerged from academic research and used a1.
single or very few inputs derived from market and fundamental data. These
signals are now largely commoditized and available as ETF, such as basic mean-
reversion strategies.
In the 2000s, factor-based investing proliferated. Funds used algorithms to2.
identify assets exposed to risk factors like value or momentum to seek arbitrage
opportunities. Redemptions during the early days of the financial crisis
triggered the quant quake of August 2007 that cascaded through the factor-based
fund industry. These strategies are now also available as long-only smart-beta
funds that tilt portfolios according to a given set of risk factors.
The third era is driven by investments in ML capabilities and alternative data to3.
generate profitable signals for repeatable trading strategies. Factor decay is a
major challenge: the excess returns from new anomalies have been shown to
drop by a quarter from discovery to publication, and by over 50% after
publication due to competition and crowding.

There are several categories of trading strategies that use algorithms to execute trading
rules:

Short-term trades that aim to profit from small price movements, for example,
due to arbitrage
Behavioral strategies that aim to capitalize on anticipating the behavior of other
market participants
Programs that aim to optimize trade execution, and
A large group of trading based on predicted pricing

The HFT funds discussed above most prominently rely on short holding periods to benefit
from minor price movements based on bid-ask arbitrage or statistical arbitrage. Behavioral
algorithms usually operate in lower liquidity environments and aim to anticipate moves by
a larger player likely to significantly impact the price. The expectation of the price impact is
based on sniffing algorithms that generate insights into other market participants'
strategies, or market patterns such as forced trades by ETFs.

Machine Learning for Trading Chapter 1

[30]

Trade-execution programs aim to limit the market impact of trades and range from the
simple slicing of trades to match time-weighted average pricing (TWAP) or volume-
weighted average pricing (VWAP). Simple algorithms leverage historical patterns,
whereas more sophisticated algorithms take into account transaction costs, implementation
shortfall or predicted price movements. These algorithms can operate at the security or
portfolio level, for example, to implement multileg derivative or cross-asset trades.

Use Cases of ML for Trading
ML extracts signals from a wide range of market, fundamental, and alternative data, and
can be applied at all steps of the algorithmic trading-strategy process. Key applications
include:

Data mining to identify patterns and extract features
Supervised learning to generate risk factors or alphas and create trade ideas
Aggregation of individual signals into a strategy
Allocation of assets according to risk profiles learned by an algorithm
The testing and evaluation of strategies, including through the use of synthetic
data
The interactive, automated refinement of a strategy using reinforcement learning

We briefly highlight some of these applications and identify where we will demonstrate
their use in later chapters.

Data mining for feature extraction
The cost-effective evaluation of large, complex datasets requires the detection of signals at
scale. There are several examples throughout the book:

Information theory is a useful tool to extract features that capture potential
signals and can be used in ML models. In Chapter 4, Alpha Factor Research we use
mutual information to assess the potential values of individual features for a
supervised learning algorithm to predict asset returns.
In Chapter 12, Unsupervised Learning, we introduce various techniques to create
features from high-dimensional datasets. In Chapter 14, Topic Modeling, we
apply these techniques to text data.

Machine Learning for Trading Chapter 1

[31]

We emphasize model-specific ways to gain insights into the predictive power of
individual variables. We use a novel game-theoretic approach called SHapley
Additive exPlanations (SHAP) to attribute predictive performance to individual
features in complex Gradient Boosting machines with a large number of input
variables.

Supervised learning for alpha factor creation and
aggregation
The main rationale for applying ML to trading is to obtain predictions of asset
fundamentals, price movements or market conditions. A strategy can leverage multiple ML
algorithms that build on each other. Downstream models can generate signals at the
portfolio level by integrating predictions about the prospects of individual assets, capital
market expectations, and the correlation among securities. Alternatively, ML predictions
can inform discretionary trades as in the quantamental approach outlined above. ML
predictions can also target specific risk factors, such as value or volatility, or implement
technical approaches, such as trend following or mean reversion:

In Chapter 3, Alternative Data for Finance, we illustrate how to work with
fundamental data to create inputs to ML-driven valuation models
In Chapter 13, Working with Text Data, Chapter 14, Topic Modeling, and Chapter
15, Word Embeddings we use alternative data on business reviews that can be used
to project revenues for a company as an input for a valuation exercise.
In Chapter 8, Time Series Models, we demonstrate how to forecast macro
variables as inputs to market expectations and how to forecast risk factors such
as volatility
In Chapter 18, Recurrent Neural Networks we introduce recurrent neural
networks (RNNs) that achieve superior performance with non-linear time series
data.

Asset allocation
ML has been used to allocate portfolios based on decision-tree models that compute a
hierarchical form of risk parity. As a result, risk characteristics are driven by patterns in
asset prices rather than by asset classes and achieve superior risk-return characteristics.

In Chapter 5, Strategy Evaluation and Chapter 12, Unsupervised Learning, we illustrate how
hierarchical clustering extracts data-driven risk classes that better reflect correlation
patterns than conventional asset class definition.

https://www.packtpub.com/sites/default/files/downloads/Recurrent_Neural_Networks.pdf

Machine Learning for Trading Chapter 1

[32]

Testing trade ideas
Backtesting is a critical step to select successful algorithmic trading strategies. Cross-
validation using synthetic data is a key ML technique to generate reliable out-of-sample
results when combined with appropriate methods to correct for multiple testing. The time
series nature of financial data requires modifications to the standard approach to avoid
look-ahead bias or otherwise contaminate the data used for training, validation, and
testing. In addition, the limited availability of historical data has given rise to alternative
approaches that use synthetic data:

We will demonstrate various methods to test ML models using market,
fundamental, and alternative that obtain sound estimates of out-of-sample errors.
In Chapter 20, Autoencoders and Generative Adversarial Nets, we present GAN that
are capable of producing high-quality synthetic data.

Reinforcement learning
Trading takes place in a competitive, interactive marketplace. Reinforcement learning aims
to train agents to learn a policy function based on rewards.

In Chapter 21, Reinforcement Learning we present key reinforcement algorithms
like Q-Learning and the Dyna architecture and demonstrate the training of
reinforcement algorithms for trading using OpenAI's gym environment.

Summary
In this chapter, we introduced algorithmic trading strategies and how ML has become a key
ingredient for the design and combination of alpha factors, which in turn are the key
drivers of portfolio performance. We covered various industry trends around algorithmic
trading strategies, the emergence of alternative data, and the use of ML to exploit these new
sources of informational advantages.

Furthermore, we introduced the algorithmic-trading-strategy design process, important
types of alpha factors, and how we will use ML to design and execute our strategies. In the
next two chapters, we will take a closer look at the oil that fuels any algorithmic trading
strategy—the market, fundamental, and alternative data sources—using ML.

https://www.packtpub.com/sites/default/files/downloads/Autoencoders_and_Generative_Adversarial_Nets.pdf
https://www.packtpub.com/sites/default/files/downloads/Reinforcement_Learning.pdf

2
Market and Fundamental Data

Data has always been an essential driver of trading, and traders have long made efforts to
gain an advantage by having access to superior information. These efforts date back at least
to the rumors that the House Rothschild benefited handsomely from bond purchases upon
advance news about the British victory at Waterloo carried by pigeons across the channel.

Today, investments in faster data access take the shape of the Go West consortium of
leading high-frequency trading (HFT) firms that connects the Chicago Mercantile
Exchange (CME) with Tokyo. The round-trip latency between the CME and the BATS
exchange in New York has dropped to close to the theoretical limit of eight milliseconds as
traders compete to exploit arbitrage opportunities.

Traditionally, investment strategies mostly relied on publicly available data, with limited
efforts to create or acquire private datasets. In the case of equities, fundamental strategies
used financial models built on reported financials, possibly combined with industry or
macro data. Strategies motivated by technical analysis extract signals from market data,
such as prices and volumes.

Machine learning (ML) algorithms can exploit market and fundamental data more
efficiently, in particular when combined with alternative data, which is the topic of the next
chapter. We will address several techniques that focus on market and fundamental data in
later chapters, such as classic and modern time-series techniques, including recurrent
neural networks (RNNs).

This chapter introduces market and fundamental data sources and the environment in
which they are created. Familiarity with various types of orders and the trading
infrastructure matters because they affect backtest simulations of a trading strategy. We
also illustrate how to use Python to access and work with trading and financial statement
data.

In particular, this chapter will cover the following topics:

How market microstructure shapes market data
How to reconstruct the order book from tick data using Nasdaq ITCH

Market and Fundamental Data Chapter 2

[34]

How to summarize tick data using various types of bars
How to work with eXtensible Business Reporting Language (XBRL)-encoded
electronic filings
How to parse and combine market and fundamental data to create a P/E series
How to access various market and fundamental data sources using Python

How to work with market data
Market data results from the placement and processing of buy and sell orders in the course
of the trading of financial instruments on the many marketplaces. The data reflects the
institutional environment of trading venues, including the rules and regulations that
govern orders, trade execution, and price formation.

Algorithmic traders use ML algorithms to analyze the flow of buy and sell orders and the
resulting volume and price statistics to extract trade signals or features that capture insights
into, for example, demand-supply dynamics or the behavior of certain market participants.

We will first review institutional features that impact the simulation of a trading strategy
during a backtest. Then, we will take a look at how tick data can be reconstructed from the
order book source. Next, we will highlight several methods that regularize tick data and
aim to maximize the information content. Finally, we will illustrate how to access various
market data provider interfaces and highlight several providers.

Market microstructure
Market microstructure is the branch of financial economics that investigates the trading
process and the organization of related markets. The institutional details are quite complex
and diverse across asset classes and their derivatives, trading venues, and geographies. We
will only give a brief overview of key concepts before we dive into the data generated by
trading. The references on GitHub link to several sources that treat this subject in great
detail.

Marketplaces
Trading in financial instruments occurs in organized, mostly electronic exchanges, and over
the counter. An exchange is a central marketplace where buyers and sellers meet, and
buyers compete with each other for the highest bid while sellers compete for the lowest
offer.

Market and Fundamental Data Chapter 2

[35]

There are many exchanges and alternative trading venues across the US and abroad. The
following table lists some of the larger global exchanges and the trading volumes for the 12
months concluded 03/2018 in various asset classes, including derivatives. Typically, a
minority of financial instruments accounts for most trading:

Exchange

Stocks
Market

Cap (USD
mn)

Listed
Companies

Volume / Day
(USD mn)

Shares /
Day ('000)

Options / Day
('000)

NYSE 23,138,626 2,294 78,410 6,122 1,546
Nasdaq-US 10,375,718 2,968 65,026 7,131 2,609
Japan Exchange Group Inc. 6,287,739 3,618 28,397 3,361 1
Shanghai Stock Exchange 5,022,691 1,421 34,736 9,801
Euronext 4,649,073 1,240 9,410 836 304
Hong Kong Exchanges and
Clearing 4,443,082 2,186 12,031 1,174 516
LSE Group 3,986,413 2,622 10,398 1,011
Shenzhen Stock Exchange 3,547,312 2,110 40,244 14,443
Deutsche Boerse AG 2,339,092 506 7,825 475
BSE India Limited 2,298,179 5,439 602 1,105
National Stock Exchange of
India Limited 2,273,286 1,952 5,092 10,355
BATS Global Markets – US 1,243
Chicago Board Options
Exchange 1,811
International Securities
Exchange 1,204

Exchanges may rely on bilateral trading or order-driven systems, where buy and sell orders
are matched according to certain rules. Price formation may occur through auctions, such
as in the New York Stock Exchange (NYSE), where the highest bid and lowest offer are
matched, or through dealers who buy from sellers and sell to buyers.

Many exchanges use intermediaries that provide liquidity, that is, the ability to trade, by
making markets in certain securities. The NYSE, for example, usually has a single
designated market maker who ensures orderly trading for each security, while the National
Association of Securities Dealers Automated Quotations (Nasdaq) has several.
Intermediaries can act as dealers that trade as principals on their own behalf, or brokers
that trade as agents on behalf of others.

Market and Fundamental Data Chapter 2

[36]

Exchanges used to be member-owned but have often moved to corporate ownership as
market reforms have increased competition. The NYSE dates back to 1792, whereas
the Nasdaq started 1971 as the world's first electronic stock market and took over most
stock trades that had been executed OTC. In US equity markets alone, trading is
fragmented across 13 exchanges and over 40 alternative trading venues, each reporting
trades to the consolidated tape, but at different latencies.

Types of orders
Traders can place various types of buy or sell orders. Some orders guarantee immediate
execution, while others may state a price threshold or other conditions that trigger
execution. Orders are typically valid for the same trading day unless specified otherwise.

A market order guarantees immediate execution of the order upon arrival to the trading
venue, at the price that prevails at that moment. In contrast, a limit order only executes if
the market price is higher (lower) than the limit for a sell (buy) limit order. A stop order, in
turn, only becomes active when the market price rises above (falls below) a specified price
for a buy (sell) stop order. A buy stop order can be used to limit losses of short sales. Stop
orders may also have limits.

Numerous other conditions can be attached to orders—all or none orders prevent partial
execution and are only filled if a specified number of shares is available, and can be valid
for the day or longer. They require special handling and are not visible to market
participants. Fill or kill orders also prevent partial execution but cancel if not executed
immediately. Immediate or cancel orders immediately buy or sell the number of shares that
are available and cancel the remainder. Not-held orders allow the broker to decide on the
time and price of execution. Finally, the market on open/close orders executes on or near
the opening or closing of the market. Partial executions are allowed.

Working with order book data
The primary source of market data is the order book, which is continuously updated in
real-time throughout the day to reflect all trading activity. Exchanges typically offer this
data as a real-time service and may provide some historical data for free.

The trading activity is reflected in numerous messages about trade orders sent by market
participants. These messages typically conform to the electronic Financial Information
eXchange (FIX) communications protocol for real-time exchange of securities transactions
and market data or a native exchange protocol.

Market and Fundamental Data Chapter 2

[37]

The FIX protocol
Just like SWIFT is the message protocol for back-office (example, for trade-settlement)
messaging, the FIX protocol is the de facto messaging standard for communication
before and during, trade execution between exchanges, banks, brokers, clearing firms, and
other market participants. Fidelity Investments and Salomon Brothers introduced FIX in
1992 to facilitate electronic communication between broker-dealers and institutional clients
who by then exchanged information over the phone.

It became popular in global equity markets before expanding into foreign exchange, fixed
income and derivatives markets, and further into post-trade to support straight-through
processing. Exchanges provide access to FIX messages as a real-time data feed that is
parsed by algorithmic traders to track market activity and, for example, identify the
footprint of market participants and anticipate their next move.

The sequence of messages allows for the reconstruction of the order book. The scale of
transactions across numerous exchanges creates a large amount (~10 TB) of unstructured
data that is challenging to process and, hence, can be a source of competitive advantage.

The FIX protocol, currently at version 5.0, is a free and open standard with a large
community of affiliated industry professionals. It is self-describing like the more recent
XML, and a FIX session is supported by the underlying Transmission Control Protocol
(TCP) layer. The community continually adds new functionality.

The protocol supports pipe-separated key-value pairs, as well as a tag-based FIXML syntax.
A sample message that requests a server login would look as follows:

8=FIX.5.0|9=127|35=A|59=theBroker.123456|56=CSERVER|34=1|32=20180117-
08:03:04|57=TRADE|50=any_string|98=2|108=34|141=Y|553=12345|554=passw0rd!|1
0=131|

There are a few open source FIX implementations in python that can be used to formulate
and parse FIX messages. Interactive Brokers offer a FIX-based computer-to-computer
interface (CTCI) for automated trading (see the resources section for this chapter in the
GitHub repo).

Market and Fundamental Data Chapter 2

[38]

Nasdaq TotalView-ITCH Order Book data
While FIX has a dominant large market share, exchanges also offer native protocols. The
Nasdaq offers a TotalView ITCH direct data-feed protocol that allows subscribers to track
individual orders for equity instruments from placement to execution or cancellation.

As a result, it allows for the reconstruction of the order book that keeps track of the list of
active-limit buy and sell orders for a specific security or financial instrument. The order
book reveals the market depth throughout the day by listing the number of shares being
bid or offered at each price point. It may also identify the market participant responsible for
specific buy and sell orders unless it is placed anonymously. Market depth is a key
indicator of liquidity and the potential price impact of sizable market orders.

In addition to matching market and limit orders, the Nasdaq also operates auctions or
crosses that execute a large number of trades at market opening and closing. Crosses are
becoming more important as passive investing continues to grow and traders look for
opportunities to execute larger blocks of stock. TotalView also disseminates the Net Order
Imbalance Indicator (NOII) for the Nasdaq opening and closing crosses and Nasdaq
IPO/Halt cross.

Parsing binary ITCH messages
The ITCH v5.0 specification declares over 20 message types related to system events, stock
characteristics, the placement and modification of limit orders, and trade execution. It also
contains information about the net order imbalance before the open and closing cross.

The Nasdaq offers samples of daily binary files for several months. The GitHub repository
for this chapter contains a notebook, build_order_book.ipynb that illustrates how to
parse a sample file of ITCH messages and reconstruct both the executed trades and the
order book for any given tick.

The following table shows the frequency of the most common message types for the sample
file date March 29, 2018:

Message
type Order book impact Number of messages

A New unattributed limit order 136,522,761
D Order canceled 133,811,007
U Order canceled and replaced 21,941,015

E
Full or partial execution; possibly multiple messages
for the same original order 6,687,379

Market and Fundamental Data Chapter 2

[39]

X Modified after partial cancellation 5,088,959
F Add attributed order 2,718,602
P Trade Message (non-cross) 1,120,861

C
Executed in whole or in part at a price different from
the initial display price 157,442

Q Cross Trade Message 17,233

For each message, the specification lays out the components and their respective length and
data types:

Name Offset Length Value Notes
Message type 0 1 F Add Order MPID attribution message
Stock locate 1 2 Integer Locate code identifying the security
Tracking number 3 2 Integer Nasdaq internal tracking number
Timestamp 5 6 Integer Nanoseconds since midnight
Order reference number 11 8 Integer Unique reference number of the new order
Buy/sell indicator 19 1 Alpha The type of order: B = Buy Order, S = Sell Order
Shares 20 4 Integer Number of shares for the order being added to the book
Stock 24 8 Alpha Stock symbol, right-padded with spaces
Price 32 4 Price (4) The display price of the new order
Attribution 36 4 Alpha Nasdaq Market participant identifier associated with the order

Python provides the struct module to parse binary data using format strings that identify
the message elements by indicating length and type of the various components of the byte
string as laid out in the specification.

Let's walk through the critical steps to parse the trading messages and reconstruct the order
book:

The ITCH parser relies on the message specifications provided as a .csv file1.
(created by create_message_spec.py) and assembles format strings according
to the formats dictionary:

formats = {
 ('integer', 2): 'H', # int of length 2 => format string 'H'
 ('integer', 4): 'I',
 ('integer', 6): '6s', # int of length 6 => parse as string,
 convert later
 ('integer', 8): 'Q',
 ('alpha', 1) : 's',
 ('alpha', 2) : '2s',
 ('alpha', 4) : '4s',
 ('alpha', 8) : '8s',
 ('price_4', 4): 'I',

Market and Fundamental Data Chapter 2

[40]

 ('price_8', 8): 'Q',
}

The parser translates the message specs into format strings and namedtuples2.
that capture the message content:

Get ITCH specs and create formatting (type, length) tuples
specs = pd.read_csv('message_types.csv')
specs['formats'] = specs[['value', 'length']].apply(tuple,
 axis=1).map(formats)

Formatting for alpha fields
alpha_fields = specs[specs.value == 'alpha'].set_index('name')
alpha_msgs = alpha_fields.groupby('message_type')
alpha_formats = {k: v.to_dict() for k, v in alpha_msgs.formats}
alpha_length = {k: v.add(5).to_dict() for k, v in
alpha_msgs.length}

Generate message classes as named tuples and format strings
message_fields, fstring = {}, {}
for t, message in specs.groupby('message_type'):
 message_fields[t] = namedtuple(typename=t,
field_names=message.name.tolist())
 fstring[t] = '>' + ''.join(message.formats.tolist())

Fields of the alpha type require post-processing as defined in3.
the format_alpha function:

def format_alpha(mtype, data):
 for col in alpha_formats.get(mtype).keys():
 if mtype != 'R' and col == 'stock': # stock name only in
 summary message 'R'
 data = data.drop(col, axis=1)
 continue
 data.loc[:, col] = data.loc[:, col].str.decode("utf-
 8").str.strip()
 if encoding.get(col):
 data.loc[:, col] = data.loc[:,
 col].map(encoding.get(col)) # int encoding
 return data

Market and Fundamental Data Chapter 2

[41]

The binary file for a single day contains over 300,000,000 messages worth over 94.
GB. The script appends the parsed result iteratively to a file in the
fast HDF5 format to avoid memory constraints (see last section in this chapter for
more on this format). The following (simplified) code processes the binary file
and produces the parsed orders stored by message type:

with (data_path / file_name).open('rb') as data:
 while True:
 message_size = int.from_bytes(data.read(2),
byteorder='big',
 signed=False)
 message_type = data.read(1).decode('ascii')
 message_type_counter.update([message_type])
 record = data.read(message_size - 1)
 message =
message_fields[message_type]._make(unpack(fstring[message_type],
 record))
 messages[message_type].append(message)
 # deal with system events like market open/close
 if message_type == 'S':
 timestamp = int.from_bytes(message.timestamp,
 byteorder='big')
 if message.event_code.decode('ascii') == 'C': # close
 store_messages(messages)
 break

As expected, a small number of the over 8,500 equity securities traded on this5.
day account for most trades:

with pd.HDFStore(hdf_store) as store:
 stocks = store['R'].loc[:, ['stock_locate', 'stock']]
 trades = store['P'].append(store['Q'].rename(columns=
 {'cross_price': 'price'}).merge(stocks)
trades['value'] = trades.shares.mul(trades.price)
trades['value_share'] = trades.value.div(trades.value.sum())
trade_summary =
 trades.groupby('stock').value_share.sum().sort_values
 (ascending=False)
trade_summary.iloc[:50].plot.bar(figsize=(14, 6), color='darkblue',
 title='% of Traded Value')
plt.gca().yaxis.set_major_formatter(FuncFormatter(lambda y, _:
 '{:.0%}'.format(y)))

Market and Fundamental Data Chapter 2

[42]

We get the following plot for the graph:

Reconstructing trades and the order book
The parsed messages allow us to rebuild the order flow for the given day. The 'R' message
type contains a listing of all stocks traded during a given day, including information about
initial public offerings (IPOs) and trading restrictions.

Throughout the day, new orders are added, and orders that are executed and canceled are
removed from the order book. The proper accounting for messages that reference orders
placed on a prior date would require tracking the order book over multiple days, but we
are ignoring this aspect here.

The get_messages() function illustrates how to collect the orders for a single stock that
affects trading (refer to the ITCH specification for details about each message, slightly
simplified, see notebook):

def get_messages(date, stock=stock):
 """Collect trading messages for given stock"""
 with pd.HDFStore(itch_store) as store:
 stock_locate = store.select('R', where='stock =
 stock').stock_locate.iloc[0]
 target = 'stock_locate = stock_locate'

 data = {}

Market and Fundamental Data Chapter 2

[43]

 # relevant message types
 messages = ['A', 'F', 'E', 'C', 'X', 'D', 'U', 'P', 'Q']
 for m in messages:
 data[m] = store.select(m,
 where=target).drop('stock_locate', axis=1).assign(type=m)

 order_cols = ['order_reference_number', 'buy_sell_indicator',
 'shares', 'price']
 orders = pd.concat([data['A'], data['F']], sort=False,
 ignore_index=True).loc[:, order_cols]

 for m in messages[2: -3]:
 data[m] = data[m].merge(orders, how='left')

 data['U'] = data['U'].merge(orders, how='left',
 right_on='order_reference_number',
 left_on='original_order_reference_number',
 suffixes=['', '_replaced'])

 data['Q'].rename(columns={'cross_price': 'price'}, inplace=True)
 data['X']['shares'] = data['X']['cancelled_shares']
 data['X'] = data['X'].dropna(subset=['price'])

 data = pd.concat([data[m] for m in messages], ignore_index=True,
 sort=False)

Reconstructing successful trades, that is, orders that are executed as opposed to those that
were canceled from trade-related message types, C, E, P, and Q, is relatively
straightforward:

def get_trades(m):
 """Combine C, E, P and Q messages into trading records"""
 trade_dict = {'executed_shares': 'shares', 'execution_price':
 'price'}
 cols = ['timestamp', 'executed_shares']
 trades = pd.concat([m.loc[m.type == 'E', cols +
 ['price']].rename(columns=trade_dict),
 m.loc[m.type == 'C', cols +
 ['execution_price']].rename(columns=trade_dict),
 m.loc[m.type == 'P', ['timestamp', 'price', 'shares']],
 m.loc[m.type == 'Q', ['timestamp', 'price',
 'shares']].assign(cross=1),
], sort=False).dropna(subset=['price']).fillna(0)
 return trades.set_index('timestamp').sort_index().astype(int)

Market and Fundamental Data Chapter 2

[44]

The order book keeps track of limit orders, and the various price levels for buy and sell
orders constitute the depth of the order book. To reconstruct the order book for a given
level of depth requires the following steps:

The add_orders() function accumulates sell orders in ascending, and buy1.
orders in descending order for a given timestamp up to the desired level of
depth:

def add_orders(orders, buysell, nlevels):
 new_order = []
 items = sorted(orders.copy().items())
 if buysell == -1:
 items = reversed(items)
 for i, (p, s) in enumerate(items, 1):
 new_order.append((p, s))
 if i == nlevels:
 break
 return orders, new_order

We iterate over all ITCH messages and process orders and their replacements as2.
required by the specification:

for message in messages.itertuples():
 i = message[0]
 if np.isnan(message.buy_sell_indicator):
 continue
 message_counter.update(message.type)

 buysell = message.buy_sell_indicator
 price, shares = None, None

 if message.type in ['A', 'F', 'U']:
 price, shares = int(message.price), int(message.shares)

 current_orders[buysell].update({price: shares})
 current_orders[buysell], new_order =
 add_orders(current_orders[buysell], buysell, nlevels)
 order_book[buysell][message.timestamp] = new_order

 if message.type in ['E', 'C', 'X', 'D', 'U']:
 if message.type == 'U':
 if not np.isnan(message.shares_replaced):
 price = int(message.price_replaced)
 shares = -int(message.shares_replaced)
 else:
 if not np.isnan(message.price):
 price = int(message.price)

Market and Fundamental Data Chapter 2

[45]

 shares = -int(message.shares)

 if price is not None:
 current_orders[buysell].update({price: shares})
 if current_orders[buysell][price] <= 0:
 current_orders[buysell].pop(price)
 current_orders[buysell], new_order =
 add_orders(current_orders[buysell], buysell, nlevels)
 order_book[buysell][message.timestamp] = new_order

The number of orders at different price levels, highlighted in the following screenshot using
different intensities for buy and sell orders, visualizes the depth of liquidity at any given
point in time. The left panel shows how the distribution of limit order prices was weighted
toward buy orders at higher prices. The right panel plots the evolution of limit orders and
prices throughout the trading day: the dark line tracks the prices for executed trades during
market hours, whereas the red and blue dots indicate individual limit orders on a per-
minute basis (see notebook for details):

Regularizing tick data
The trade data is indexed by nanoseconds and is very noisy. The bid-ask bounce, for
instance, causes the price to oscillate between the bid and ask prices when trade initiation
alternates between buy and sell market orders. To improve the noise-signal ratio and
improve the statistical properties, we need to resample and regularize the tick data by
aggregating the trading activity.

We typically collect the open (first), low, high, and closing (last) price for the aggregated
period, alongside the volume-weighted average price (VWAP), the number of shares
traded, and the timestamp associated with the data.

Market and Fundamental Data Chapter 2

[46]

See the normalize_tick_data.ipynb notebook in the folder for this chapter on
GitHub for additional detail.

Tick bars
A plot of the raw tick price and volume data for AAPL looks as follows:

stock, date = 'AAPL', '20180329'
title = '{} | {}'.format(stock, pd.to_datetime(date).date()

with pd.HDFStore(itch_store) as store:
 s = store['S'].set_index('event_code') # system events
 s.timestamp = s.timestamp.add(pd.to_datetime(date)).dt.time
 market_open = s.loc['Q', 'timestamp']
 market_close = s.loc['M', 'timestamp']

with pd.HDFStore(stock_store) as store:
 trades = store['{}/trades'.format(stock)].reset_index()
trades = trades[trades.cross == 0] # excluding data from open/close
crossings
trades.price = trades.price.mul(1e-4)

trades.price = trades.price.mul(1e-4) # format price
trades = trades[trades.cross == 0] # exclude crossing trades
trades = trades.between_time(market_open, market_close) # market hours only

tick_bars = trades.set_index('timestamp')
tick_bars.index = tick_bars.index.time
tick_bars.price.plot(figsize=(10, 5), title=title), lw=1)

We get the following plot for the preceding code:

Market and Fundamental Data Chapter 2

[47]

The tick returns are far from normally distributed, as evidenced by the low p-value
of scipy.stats.normaltest:

from scipy.stats import normaltest
normaltest(tick_bars.price.pct_change().dropna())

NormaltestResult(statistic=62408.76562431228, pvalue=0.0)

Time bars
Time bars involve trade aggregation by period:

def get_bar_stats(agg_trades):
 vwap = agg_trades.apply(lambda x: np.average(x.price,
 weights=x.shares)).to_frame('vwap')
 ohlc = agg_trades.price.ohlc()
 vol = agg_trades.shares.sum().to_frame('vol')
 txn = agg_trades.shares.size().to_frame('txn')
 return pd.concat([ohlc, vwap, vol, txn], axis=1)

resampled = trades.resample('1Min')
time_bars = get_bar_stats(resampled)

We can display the result as a price-volume chart:

def price_volume(df, price='vwap', vol='vol', suptitle=title):
 fig, axes = plt.subplots(nrows=2, sharex=True, figsize=(15, 8))
 axes[0].plot(df.index, df[price])
 axes[1].bar(df.index, df[vol], width=1 / (len(df.index)),
 color='r')

 xfmt = mpl.dates.DateFormatter('%H:%M')
 axes[1].xaxis.set_major_locator(mpl.dates.HourLocator(interval=3))
 axes[1].xaxis.set_major_formatter(xfmt)
 axes[1].get_xaxis().set_tick_params(which='major', pad=25)
 axes[0].set_title('Price', fontsize=14)
 axes[1].set_title('Volume', fontsize=14)
 fig.autofmt_xdate()
 fig.suptitle(suptitle)
 fig.tight_layout()
 plt.subplots_adjust(top=0.9)

price_volume(time_bars)

Market and Fundamental Data Chapter 2

[48]

We get the following plot for the preceding code:

Or as a candlestick chart using the bokeh plotting library:

resampled = trades.resample('5Min') # 5 Min bars for better print
df = get_bar_stats(resampled)

increase = df.close > df.open
decrease = df.open > df.close
w = 2.5 * 60 * 1000 # 2.5 min in ms

WIDGETS = "pan, wheel_zoom, box_zoom, reset, save"

p = figure(x_axis_type='datetime', tools=WIDGETS, plot_width=1500, title =
"AAPL Candlestick")
p.xaxis.major_label_orientation = pi/4
p.grid.grid_line_alpha=0.4

p.segment(df.index, df.high, df.index, df.low, color="black")
p.vbar(df.index[increase], w, df.open[increase], df.close[increase],
fill_color="#D5E1DD", line_color="black")
p.vbar(df.index[decrease], w, df.open[decrease], df.close[decrease],
fill_color="#F2583E", line_color="black")
show(p)

Market and Fundamental Data Chapter 2

[49]

Take a look at the following screenshot:

Plotting AAPL Candlestick

Volume bars
Time bars smooth some of the noise contained in the raw tick data but may fail to account
for the fragmentation of orders. Execution-focused algorithmic trading may aim to match
the volume weighted average price (VWAP) over a given period, and will divide a single
order into multiple trades and place orders according to historical patterns. Time bars
would treat the same order differently, even though no new information has arrived in the
market.

Volume bars offer an alternative by aggregating trade data according to volume. We can
accomplish this as follows:

trades_per_min = trades.shares.sum()/(60*7.5) # min per trading day
trades['cumul_vol'] = trades.shares.cumsum()
df = trades.reset_index()
by_vol =
 df.groupby(df.cumul_vol.div(trades_per_min).round().astype(int))
vol_bars = pd.concat([by_vol.timestamp.last().to_frame('timestamp'),
 get_bar_stats(by_vol)], axis=1)
price_volume(vol_bars.set_index('timestamp'))

Market and Fundamental Data Chapter 2

[50]

We get the following plot for the preceding code:

Dollar bars
When asset prices change significantly or after stock splits, the value of a given amount of
shares changes. Volume bars do not correctly reflect this and can hamper the comparison of
trading behavior for different periods that reflect such changes. In these cases, the volume
bar method should be adjusted to utilize the product of shares and price to produce dollar
bars.

API access to market data
There are several options to access market data via API using Python. We first present a
few sources built into the pandas library. Then we briefly introduce the trading platform
Quantopian, the data provider Quandl and the backtesting library that we will use later in
the book, and list several additional options to access various types of market data. The
folder directory data_providers on GitHub contains several notebooks that illustrate the
usage of these options.

Market and Fundamental Data Chapter 2

[51]

Remote data access using pandas
The pandas library enables access to data displayed on websites
using the read_html function and access to the API endpoints of various data providers
through the related pandas-datareader library.

Reading html tables
The download of the content of one or more html tables works as follows, for instance for
the constituents of the S&P500 index from Wikipedia:

sp_url = 'https://en.wikipedia.org/wiki/List_of_S%26P_500_companies'
sp = pd.read_html(sp_url, header=0)[0] # returns a list for each table
sp.info()

RangeIndex: 505 entries, 0 to 504
Data columns (total 9 columns):
Ticker symbol 505 non-null object
Security 505 non-null object
SEC filings 505 non-null object
GICS Sector 505 non-null object
GICS Sub Industry 505 non-null object
Location 505 non-null object
Date first added[3][4] 398 non-null object
CIK 505 non-null int64
Founded 139 non-null object

pandas-datareader for market data
pandas used to facilitate access to data providers' APIs directly, but this functionality has
moved to the related pandas-datareader library. The stability of the APIs varies with
provider policies, and as of June 2o18 at version 0.7, the following sources are available:

Source Scope Comment

Yahoo! Finance EOD price, dividends, split data for stock
and FX pairs Unstable

Tiingo EOD prices on equities, mutual funds, and
ETFs

Free registration
required

The Investors
Exchange (IEX) Historical stock prices, order-book data Limited to five years

Robinhood EOD equity prices Limited to one year

Quandl Marketplace for a broad range of asset prices Premium data
require a subscription

Market and Fundamental Data Chapter 2

[52]

Nasdaq Latest ticker symbols traded on Nasdaq with
some additional info

Stooq Some stock market index data
MOEX Moscow Stock Exchange Data
Alpha Vantage EOD stock prices and FX pairs

Fama/French Factor returns and research portfolios from
the FF Data Library

Access and retrieval of data follow a similar API for all sources, as illustrated for Yahoo!
Finance:

import pandas_datareader.data as web
from datetime import datetime

start = '2014' # accepts strings
end = datetime(2017, 5, 24) # or datetime objects

yahoo= web.DataReader('FB', 'yahoo', start=start, end=end)
yahoo.info()

DatetimeIndex: 856 entries, 2014-01-02 to 2017-05-25
Data columns (total 6 columns):
High 856 non-null float64
Low 856 non-null float64
Open 856 non-null float64
Close 856 non-null float64
Volume 856 non-null int64
Adj Close 856 non-null float64

dtypes: float64(5), int64(1)

The Investor Exchange
IEX is an alternative exchange started in response to the HFT controversy and portrayed in
Michael Lewis' controversial Flash Boys. It aims to slow down the speed of trading to create
a more level playing field and has been growing rapidly since launch in 2016 while still
small with a market share of around 2.5% in June 2018.

Market and Fundamental Data Chapter 2

[53]

In addition to historical EOD price and volume data, IEX provides real-time depth of book
quotations that offer an aggregated size of orders by price and side. This service also
includes last trade price and size information:

book = web.get_iex_book('AAPL')
orders = pd.concat([pd.DataFrame(book[side]).assign(side=side) for side in
['bids', 'asks']])
orders.sort_values('timestamp').head()

 price size timestamp side
4 140.00 100 1528983003604 bids
3 175.30 100 1528983900163 bids
3 205.80 100 1528983900163 asks
1 187.00 200 1528996876005 bids
2 186.29 100 1528997296755 bids

See additional examples in the datareader.ipynb notebook.

Quantopian
Quantopian is an investment firm that offers a research platform to crowd-source trading
algorithms. Upon free registration, it enables members to research trading ideas using a
broad variety of data sources. It also offers an environment to backtest the algorithm
against historical data, as well forward-test it out-of-sample with live data. It awards
investment allocations for top-performing algorithms whose authors are entitled to a 10%
(at time of writing) profit share.

The Quantopian research platform consists of a Jupyter Notebook environment for research
and development for alpha factor research and performance analysis. There is also an
Interactive Development Environment (IDE) for coding algorithmic strategies and
backtesting the result using historical data since 2002 with minute-bar frequency.

Users can also simulate algorithms with live data, which is known as paper trading.
Quantopian provides various market datasets, including US equity and futures price and
volume data at a one-minute frequency, as well as US equity corporate fundamentals, and
integrates numerous alternative datasets.

We will dive into the Quantopian platform in much more detail in Chapter 4, Alpha Factor
Research and rely on its functionality throughout the book, so feel free to open an account
right away (see GitHub repo for more details).

Market and Fundamental Data Chapter 2

[54]

Zipline
Zipline is the algorithmic trading library that powers the Quantopian backtesting and live-
trading platform. It is also available offline to develop a strategy using a limited number of
free data bundles that can be ingested and used to test the performance of trading ideas
before porting the result to the online Quantopian platform for paper and live trading.

The following code illustrates how zipline permits us to access daily stock data for a
range of companies. You can run zipline scripts in the Jupyter Notebook using the magic
function of the same name.

First, you need to initialize the context with the desired security symbols. We'll also use a
counter variable. Then zipline calls handle_data, where we use the data.history()
method to look back a single period and append the data for the last day to a .csv file:

%load_ext zipline
%%zipline --start 2010-1-1 --end 2018-1-1 --data-frequency daily
from zipline.api import order_target, record, symbol

def initialize(context):
 context.i = 0
 context.assets = [symbol('FB'), symbol('GOOG'), symbol('AMZN')]

def handle_data(context, data):
 df = data.history(context.assets, fields=['price', 'volume'],
 bar_count=1, frequency="1d")
 df = df.to_frame().reset_index()

 if context.i == 0:
 df.columns = ['date', 'asset', 'price', 'volumne']
 df.to_csv('stock_data.csv', index=False)
 else:
 df.to_csv('stock_data.csv', index=False, mode='a', header=None)
 context.i += 1

df = pd.read_csv('stock_data.csv')
df.date = pd.to_datetime(df.date)
df.set_index('date').groupby('asset').price.plot(lw=2, legend=True,
 figsize=(14, 6));

Market and Fundamental Data Chapter 2

[55]

We get the following plot for the preceding code:

We will explore the capabilities of zipline, and, in particular, the online Quantopian
platform, in more detail in the coming chapters.

Quandl
Quandl provides a broad range of data sources, both free and as a subscription, using a
Python API. Register and obtain a free API key to make more than 50 calls/day. Quandl
data covers multiple asset classes beyond equities and includes FX, fixed income, indexes,
futures and options, and commodities.

API usage is straightforward, well-documented, and flexible, with numerous methods
beyond single-series downloads, for example, including bulk downloads or metadata
searches. The following call obtains the oil prices since 1986 as quoted by the US
Department of Energy:

import quandl
oil = quandl.get('EIA/PET_RWTC_D').squeeze()
oil.plot(lw=2, title='WTI Crude Oil Price')

Market and Fundamental Data Chapter 2

[56]

We get this plot for the preceding code:

Other market-data providers
A broad variety of providers offer market data for various asset classes. Examples in
relevant categories include:

Exchanges derive a growing share of their revenues from an ever broader range
of data services, typically using subscription.
Bloomberg and Thomson Reuters have long been the leading data aggregators
with a combined share of over 55% in the $28.5 billion financial data market.
Smaller rivals, such as FactSet, are growing, or emerging, such as money.net and
Quandl as well as Trading Economics or Barchart.
Specialist data providers abound. One example is LOBSTER, which aggregates
Nasdaq order-book data in real-time.
Free data providers include Alpha Vantage that offers Python APIs for real-time
equity, FX, and crypto-currency market data, as well as technical indicators.
Crowd-sourced investment firms that provide research platforms with data
access include, in addition to Quantopian, the Alpha Trading Labs, launched in
March 2018, which provide HFT infrastructure and data.

https://www.barchart.com/

Market and Fundamental Data Chapter 2

[57]

How to work with fundamental data
Fundamental data pertains to the economic drivers that determine the value of securities.
The nature of the data depends on the asset class:

For equities and corporate credit, it includes corporate financials as well as
industry and economy-wide data.
For government bonds, it includes international macro-data and foreign
exchange.
For commodities, it includes asset-specific supply-and-demand determinants,
such as weather data for crops.

We will focus on equity fundamentals for the US, where data is easier to access. There are
some 13,000+ public companies worldwide that generate 2 million pages of annual reports
and 30,000+ hours of earnings calls. In algorithmic trading, fundamental data and features
engineered from this data may be used to derive trading signals directly, for example as
value indicators, and are an essential input for predictive models, including machine
learning models.

Financial statement data
The Securities and Exchange Commission (SEC) requires US issuers, that is, listed
companies and securities, including mutual funds to file three quarterly financial
statements (Form 10-Q) and one annual report (Form 10-K), in addition to various other
regulatory filing requirements.

Since the early 1990s, the SEC made these filings available through its Electronic Data
Gathering, Analysis, and Retrieval (EDGAR) system. They constitute the primary data
source for the fundamental analysis of equity and other securities, such as corporate credit,
where the value depends on the business prospects and financial health of the issuer.

Automated processing – XBRL
Automated analysis of regulatory filings has become much easier since the SEC introduced
the XBRL, a free, open, and global standard for the electronic representation and exchange
of business reports. XBRL is based on XML; it relies on taxonomies that define the meaning
of the elements of a report and map to tags that highlight the corresponding information in
the electronic version of the report. One such taxonomy represents the US Generally
Accepted Accounting Principles (GAAP).

Market and Fundamental Data Chapter 2

[58]

The SEC introduced voluntary XBRL filings in 2005 in response to accounting scandals
before requiring this format for all filers since 2009 and continues to expand the mandatory
coverage to other regulatory filings. The SEC maintains a website that lists the current
taxonomies that shape the content of different filings and can be used to extract specific
items.

The following datasets provide information extracted from EX-101 attachments submitted
to the Commission in a flattened data format to assist users in consuming the data for
analysis. The data reflects selected information from the XBRL-tagged financial statements.
It currently includes numeric data from the quarterly and annual financial statements, as
well as certain additional fields (for example, Standard Industrial Classification (SIC)).

There are several avenues to track and access fundamental data reported to the SEC:

As part of the EDGAR Public Dissemination Service (PDS), electronic feeds of
accepted filings are available for a fee.
The SEC updates RSS feeds every 10 minutes, which list structured disclosure
submissions.
There are public index files for the retrieval of all filings through FTP for
automated processing.
The financial statement (and notes) datasets contain parsed XBRL data from all
financial statements and the accompanying notes.

The SEC also publishes log files containing the internet search traffic for EDGAR filings
through SEC.gov, albeit with a six-month delay.

Building a fundamental data time series
The scope of the data in the financial statement and notes datasets consists of numeric data
extracted from the primary financial statements (Balance sheet, income statement, cash
flows, changes in equity, and comprehensive income) and footnotes on those statements.
The data is available as early as 2009.

Extracting the financial statements and notes dataset
The following code downloads and extracts all historical filings contained in the Financial
Statement and Notes (FSN) datasets for the given range of quarters (see
edgar_xbrl.ipynb for addition details):

SEC_URL =
'https://www.sec.gov/files/dera/data/financial-statement-and-notes-data-set
s/'

Market and Fundamental Data Chapter 2

[59]

first_year, this_year, this_quarter = 2014, 2018, 3
past_years = range(2014, this_year)
filing_periods = [(y, q) for y in past_years for q in range(1, 5)]
filing_periods.extend([(this_year, q) for q in range(1, this_quarter +
 1)])
for i, (yr, qtr) in enumerate(filing_periods, 1):
 filing = f'{yr}q{qtr}_notes.zip'
 path = data_path / f'{yr}_{qtr}' / 'source'
 response = requests.get(SEC_URL + filing).content
 with ZipFile(BytesIO(response)) as zip_file:
 for file in zip_file.namelist():
 local_file = path / file
 with local_file.open('wb') as output:
 for line in zip_file.open(file).readlines():
 output.write(line)

The data is fairly large and to enable faster access than the original text files permit, it is
better to convert the text files to binary, columnar parquet format (see Efficient data storage
with pandas section in this chapter for a performance comparison of various data-storage
options compatible with pandas DataFrames):

for f in data_path.glob('**/*.tsv'):
 file_name = f.stem + '.parquet'
 path = Path(f.parents[1]) / 'parquet'
 df = pd.read_csv(f, sep='\t', encoding='latin1', low_memory=False)
 df.to_parquet(path / file_name)

For each quarter, the FSN data is organized into eight file sets that contain information
about submissions, numbers, taxonomy tags, presentation, and more. Each dataset consists
of rows and fields and is provided as a tab-delimited text file:

File Dataset Description

SUB Submission
Identifies each XBRL submission by company, form, date, and so
on

TAG Tag Defines and explains each taxonomy tag
DIM Dimension Adds detail to numeric and plain text data
NUM Numeric One row for each distinct data point in filing
TXT Plain text Contains all non-numeric XBRL fields
REN Rendering Information for rendering on SEC website
PRE Presentation Detail on the tag and number presentation in primary statements
CAL Calculation Shows arithmetic relationships among tags

Market and Fundamental Data Chapter 2

[60]

Retrieving all quarterly Apple filings
The submission dataset contains the unique identifiers required to retrieve the filings: the
Central Index Key (CIK) and the Accession Number (adsh). The following shows some of
the information about Apple's 2018Q1 10-Q filing:

apple = sub[sub.name == 'APPLE INC'].T.dropna().squeeze()
key_cols = ['name', 'adsh', 'cik', 'name', 'sic', 'countryba',
 'stprba', 'cityba', 'zipba', 'bas1', 'form', 'period',
 'fy', 'fp', 'filed']
apple.loc[key_cols]

name APPLE INC
adsh 0000320193-18-000070
cik 320193
name APPLE INC
sic 3571
countryba US
stprba CA
cityba CUPERTINO
zipba 95014
bas1 ONE APPLE PARK WAY
form 10-Q
period 20180331
fy 2018
fp Q2
filed 20180502

Using the central index key, we can identify all historical quarterly filings available for
Apple, and combine this information to obtain 26 Forms 10-Q and nine annual Forms 10-
K:

aapl_subs = pd.DataFrame()
for sub in data_path.glob('**/sub.parquet'):
 sub = pd.read_parquet(sub)
 aapl_sub = sub[(sub.cik.astype(int) == apple.cik) &
(sub.form.isin(['10-Q', '10-K']))]
 aapl_subs = pd.concat([aapl_subs, aapl_sub])

aapl_subs.form.value_counts()
10-Q 15
10-K 4

With the Accession Number for each filing, we can now rely on the taxonomies to select the
appropriate XBRL tags (listed in the TAG file) from the NUM and TXT files to obtain the
numerical or textual/footnote data points of interest.

Market and Fundamental Data Chapter 2

[61]

First, let's extract all numerical data available from the 19 Apple filings:

aapl_nums = pd.DataFrame()
for num in data_path.glob('**/num.parquet'):
 num = pd.read_parquet(num)
 aapl_num = num[num.adsh.isin(aapl_subs.adsh)]
 aapl_nums = pd.concat([aapl_nums, aapl_num])

aapl_nums.ddate = pd.to_datetime(aapl_nums.ddate, format='%Y%m%d')
aapl_nums.shape
(28281, 16)

Building a price/earnings time series
In total, the nine years of filing history provide us with over 28,000 numerical values. We
can select a useful field, such as Earnings per Diluted Share (EPS), that we can combine
with market data to calculate the popular Price/Earnings (P/E) valuation ratio.

We do need to take into account, however, that Apple split its stock 7:1 on June 4, 2014, and
Adjusted Earnings per Share before the split to make earnings comparable, as illustrated in
the following code block:

field = 'EarningsPerShareDiluted'
stock_split = 7
split_date = pd.to_datetime('20140604')

Filter by tag; keep only values measuring 1 quarter
eps = aapl_nums[(aapl_nums.tag == 'EarningsPerShareDiluted')
 & (aapl_nums.qtrs == 1)].drop('tag', axis=1)

Keep only most recent data point from each filing
eps = eps.groupby('adsh').apply(lambda x: x.nlargest(n=1,
columns=['ddate']))

Adjust earnings prior to stock split downward
eps.loc[eps.ddate < split_date,'value'] = eps.loc[eps.ddate <
 split_date, 'value'].div(7)
eps = eps[['ddate', 'value']].set_index('ddate').squeeze()
eps = eps.rolling(4, min_periods=4).sum().dropna() # create trailing
 12-months eps from quarterly data

Market and Fundamental Data Chapter 2

[62]

We can use Quandl to obtain Apple stock price data since 2009:

import pandas_datareader.data as web
symbol = 'AAPL.US'
aapl_stock = web.DataReader(symbol, 'quandl', start=eps.index.min())
aapl_stock = aapl_stock.resample('D').last() # ensure dates align with
 eps data

Now we have the data to compute the trailing 12-month P/E ratio for the entire period:

pe = aapl_stock.AdjClose.to_frame('price').join(eps.to_frame('eps'))
pe = pe.fillna(method='ffill').dropna()
pe['P/E Ratio'] = pe.price.div(pe.eps)
axes = pe.plot(subplots=True, figsize=(16,8), legend=False, lw=2);

We get the following plot for the preceding code:

Other fundamental data sources
There are numerous other sources for fundamental data. Many are accessible using the
pandas_datareader module introduced earlier. Additional data is available from certain
organizations directly, such as the IMF, World Bank, or major national statistical agencies
around the world (see references on GitHub).

Market and Fundamental Data Chapter 2

[63]

pandas_datareader – macro and industry data
The pandas_datareader library facilitates access according to the conventions introduced
at the end of the preceding section on market data. It covers APIs for numerous global
fundamental macro and industry-data sources, including the following:

Kenneth French's data library: Market data on portfolios capturing size, value,
and momentum factors, disaggregated industry
St.Louis FED (FRED): Federal Reserve data on the US economy and financial
markets
World Bank: Global database on long-term, lower-frequency economic and
social development and demographics
OECD: Similar for OECD countries
Enigma: Various datasets, including alternative sources
Eurostat: EU-focused economics, social and demographic data

Efficient data storage with pandas
We'll be using many different data sets in this book, and it's worth comparing the main
formats for efficiency and performance. In particular, we compare the following:

CSV: Comma-separated, standard flat text file format.
HDF5: Hierarchical data format, developed initially at the National Center for
Supercomputing, is a fast and scalable storage format for numerical data,
available in pandas using the PyTables library.
Parquet: A binary, columnar storage format, part of the Apache Hadoop
ecosystem, that provides efficient data compression and encoding and has been
developed by Cloudera and Twitter. It is available for pandas through the
pyarrow library, led by Wes McKinney, the original author of pandas.

The storage_benchmark.ipynb notebook compares the performance of the preceding
libraries using a test DataFrame that can be configured to contain numerical or text data, or
both. For the HDF5 library, we test both the fixed and table format. The table format
allows for queries and can be appended to.

Market and Fundamental Data Chapter 2

[64]

The following charts illustrate the read and write performance for 100,000 rows with either
1,000 columns of random floats and 1,000 columns of a random 10-character string, or just
2,000 float columns:

For purely numerical data, the HDF5 format performs best, and the table format
also shares with CSV the smallest memory footprint at 1.6 GB. The fixed format
uses twice as much space, and the parquet format uses 2 GB.
For a mix of numerical and text data, parquet is significantly faster, and HDF5
uses its advantage on reading relative to CSV (which has very low write
performance in both cases):

The notebook illustrates how to configure, test, and collect the timing using the
%%timeit cell magic, and at the same time demonstrates the usage of the related pandas
commands required to use these storage formats.

Summary
This chapter introduced the market and fundamental data sources that form the backbone
of most trading strategies. You learned about numerous ways to access this data, and how
to preprocess the raw information so that you can begin extracting trading signals using the
machine learning techniques that we will be introducing shortly.

Before we move onto the design and evaluation of trading strategies and the use of ML
models, we need to cover alternative datasets that have emerged in recent years and have
been a significant driver of the popularity of ML for algorithmic trading.

3
Alternative Data for Finance

Propelled by the explosive growth of the internet and mobile networks, digital data
continues to grow exponentially amid advances in the technology to process, store, and
analyze new data sources. The exponential growth in the availability of and ability to
manage more diverse digital data, in turn, has been a critical force behind the dramatic
performance improvements of machine learning (ML) that are driving innovation across
industries, including the investment industry.

The scale of the data revolution is extraordinary: the past two years alone have witnessed
the creation of 90% of all data that exists in the world today, and by 2020, each of the 7.7
billion people worldwide is expected to produce 1.7 MB of new information every second
of every day. On the other hand, back in 2012, only 0.5% of all data was ever analyzed and
used, whereas 33% is deemed to have value by 2020. The gap between data availability and
usage is likely to narrow quickly as global investments in analytics are set to rise beyond
$210 billion by 2020, while the value creation potential is a multiple higher.

This chapter explains how individuals, business processes, and sensors produce
alternative data. It also provides a framework to navigate and evaluate the proliferating
supply of alternative data for investment purposes. It demonstrates the workflow, from
acquisition to preprocessing and storage using Python for data obtained through web
scraping to set the stage for the application of ML. It concludes by providing examples of
sources, providers, and applications.

This chapter will cover the following topics:

How the alternative data revolution has unleashed new sources of information
How individuals, business processes, and sensors generate alternative data
How to evaluate the proliferating supply of alternative data used for algorithmic
trading
How to work with alternative data in Python, such as by scraping the internet
Important categories and providers of alternative data

Alternative Data for Finance Chapter 3

[66]

The alternative data revolution
The data deluge driven by digitization, networking, and plummeting storage costs has led
to profound qualitative changes in the nature of information available for predictive
analytics, often summarized by the five Vs:

Volume: The amount of data generated, collected, and stored is orders of
magnitude larger as the byproduct of online and offline activity, transactions,
records, and other sources and volumes continue to grow with the capacity for
analysis and storage.
Velocity: Data is generated, transferred, and processed to become available near,
or at, real-time speed.
Variety: Data is organized in formats no longer limited to structured, tabular
forms, such as CSV files or relational database tables. Instead, new sources
produce semi-structured formats, such as JSON or HTML, and unstructured
content, including raw text, image, and audio or video data, adding new
challenges to render data suitable for ML algorithms.
Veracity: The diversity of sources and formats makes it much more difficult to
validate the reliability of the data's information content.
Value: Determining the value of new datasets can be much more time—and
resource-consuming, as well as more uncertain than before.

For algorithmic trading, new data sources offer an informational advantage if they provide
access to information unavailable from traditional sources, or provide access sooner.
Following global trends, the investment industry is rapidly expanding beyond market and
fundamental data to alternative sources to reap alpha through an informational edge.
Annual spending on data, technological capabilities, and related talent are expected to
increase from the current $3 billion by 12.8% annually through 2020.

Today, investors can access macro or company-specific data in real-time that historically
has been available only at a much lower frequency. Use cases for new data sources
include the following:

Online price data on a representative set of goods and services can be used to
measure inflation
The number of store visits or purchases permits real-time estimates of company
or industry-specific sales or economic activity
Satellite images can reveal agricultural yields, or activity at mines or on oil rigs
before this information is available elsewhere

Alternative Data for Finance Chapter 3

[67]

As the standardization and adoption of big datasets advances, the information contained in
conventional data will likely lose most of its predictive value.

Furthermore, the capability to process and integrate diverse datasets and apply ML allows
for complex insights. In the past, quantitative approaches relied on simple heuristics to
rank companies using historical data for metrics such as the price-to-book ratio, whereas
ML algorithms synthesize new metrics, and learn and adapt such rules taking into account
evolving market data. These insights create new opportunities to capture classic investment
themes such as value, momentum, quality, or sentiment:

Momentum: ML can identify asset exposures to market price movements,
industry sentiment, or economic factors
Value: Algorithms can analyze large amounts of economic and industry-specific
structured and unstructured data, beyond financial statements, to predict the
intrinsic value of a company
Quality: The sophisticated analysis of integrated data allows for the evaluation of
customer or employee reviews, e-commerce, or app traffic to identify gains in
market share or other underlying earnings quality drivers

In practice, however, useful data is often not freely available and alternative datasets
instead require thorough evaluation, costly acquisition, careful management,
and sophisticated analysis to extract tradable signals.

Sources of alternative data
Alternative datasets are generated by many sources but can be classified at a high-level as
predominantly produced by:

Individuals who post on social media, review products, or use search engines
Businesses that record commercial transactions, in particular, credit card
payments, or capture supply-chain activity as intermediaries
Sensors that, among many other things, capture economic activity through
images such as satellites or security cameras, or through movement patterns such
as cell phone towers

The nature of alternative data continues to evolve rapidly as new data sources become
available while sources previously labeled alternative become part of the mainstream. The
Baltic Dry Index (BDI), for instance, assembles data from several hundred shipping
companies to approximate the supply/demand of dry bulk carriers and is now available on
the Bloomberg Terminal.

Alternative Data for Finance Chapter 3

[68]

Alternative data includes raw data as well as data that is aggregated or has been processed
in some form to add value. For instance, some providers aim to extract tradeable signals,
such as sentiment scores. We will address the various types of providers in Chapter 4,
Alpha Factor Research.

Alternative data sources differ in crucial respects that determine their value or signal
content for algorithmic trading strategies. We will address these aspects in the next section
on Evaluating alternative datasets.

Individuals
Individuals automatically create electronic data through online activities, as well as
through their offline activity as the latter is captured electronically and often linked to
online identities. Data generated by individuals is frequently unstructured in text, image, or
video formats, disseminated through multiple platforms and includes:

Social media posts, such as opinions or reactions on general-purpose sites such as
Twitter, Facebook, or LinkedIn, or business-review sites such as Glassdoor or
Yelp
E-commerce activity that reflects an interest in or the perception of products on
sites such as Amazon or Wayfair
Search engine activity using platforms such as Google or Bing
Mobile app usage, downloads, and reviews
Personal data such as messaging traffic

The analysis of social media sentiment has become very popular because it can be applied
to individual stocks, industry baskets, or market indices. The most common source is
Twitter, followed by various news vendors and blog sites. Supply is competitive, and prices
are lower because it is often obtained through increasingly commoditized web scraping.
Reliable social media datasets that include blogs, tweets, or videos have typically less than
five years of history, given how recently consumers have adopted these tools at scale.
Search history, in contrast, is available from 2004.

Business processes
Businesses and public entities produce and collect many valuable sources of alternative
data. Data that results from business processes has often more structure than that generated
by individuals. It is very effective as a leading indicator for activity that is otherwise
available at a much lower frequency.

Alternative Data for Finance Chapter 3

[69]

Data generated by business processes include:

Payment card transaction data made available by processors and financial
institutions
Company exhaust data produced by ordinary digitized activity or record-
keeping, such as banking records, cashier scanner data, or supply chain orders
Trade flow and market microstructure data (such as L-2 and L-3 order book data,
illustrated in Chapter 2, Market and Fundamental Data)
Company payments monitored by credit rating agencies or financial institutions
to assess liquidity and creditworthiness

Credit card transactions and company exhaust data, such as point-of-sale data, are among
the most reliable and predictive datasets. Credit card data is available with around ten
years of history and, at different lags, almost up to real time, while corporate earnings are
reported quarterly with a 2.5-week lag. The time horizon and reporting lag for company
exhaust data varies widely depending on the source. Market microstructure datasets have
over 15 years of history compared to sell-side flow data, which typically has fewer than five
years of consistent history.

Sensors
Data generated by networked sensors embedded in a broad range of devices are among the
most rapidly growing data sources, driven by the proliferation of smartphones and the
reduction in the cost of satellite technologies.

This category of alternative data is typically very unstructured and often significantly
larger in volume than data generated by individuals or business processes, and poses much
higher processing challenges. Key alternative data sources in this category include:

Satellite imaging to monitor economic activity, such as construction, shipping, or
commodity supply
Geolocation data to track traffic in retail stores, such as using volunteered
smartphone data, or on transport routes, such as on ships or trucks
Cameras positioned at a location of interest
Weather and pollution sensors

Alternative Data for Finance Chapter 3

[70]

The Internet of Things (IoT) will further accelerate the large-scale collection of this type of
alternative data by embedding networked microprocessors into personal and commercial
electronic devices such as home appliances, public spaces, and industrial production
processes.

Sensor-based alternative data that contains satellite images, mobile app usage, or cellular-
location tracking is typically available with a three to four-year history.

Satellites
The resources and timelines required to launch a geospatial imaging satellite have dropped
dramatically; instead of tens of millions of dollars and years of preparation, the cost has
fallen to around $100,000 to place a small satellite as a secondary payload into a low-earth
orbit. Hence, companies can obtain much higher-frequency coverage (currently about
daily) of specific locations using entire fleets of satellites.

Use cases include the monitoring of economic and commercial activity that can be captured
using aerial coverage, such as agricultural and mineral production and shipments,
construction of real estates or ships, industrial incidents such as a fire, or car, and foot
traffic at locations of interest. Related sensor data is contributed by drones that are used in
agriculture to monitor crops using infrared light.

Several challenges may need to be addressed before satellite image data can be reliably
used in ML models. These include accounting for weather conditions and in particular,
cloud cover and seasonal effects, around holidays, and the irregular coverage of specific
locations that may affect the quality of the predictive signals.

Geolocation data
Geolocation data is another rapidly-growing category of alternative data generated by
sensors. A familiar source is smartphones with which individuals voluntarily share their
geographic location through an application or from wireless signals such as GPS, CDMA,
or WiFi measure foot traffic around places of interest, such as stores, restaurants, or event
venues.

Alternative Data for Finance Chapter 3

[71]

Furthermore, an increasing number of airports, shopping malls, and retail stores have
installed sensors that track the number and movements of customers. While the original
motivation to deploy these sensors often was to measure the impact of marketing activity,
the resulting data can also be used to estimate foot traffic or sales. Sensors to capture
geolocation include 3D stereo video and thermal imaging, which lowers privacy concerns
but works well with moving objects. There are also sensors attached to ceilings as well as
pressure-sensitive mats. Some providers use multiple sensors in combination, including
vision, audio, and cellphone location for a comprehensive account of the shopper journey,
which includes not only the count and duration of visits but extends to conversion and
measurement of repeat visits.

Evaluating alternative datasets
The ultimate objective of alternative data is to provide an informational advantage in the
competitive search for trading signals that produce alpha, namely positive, uncorrelated
investment returns. In practice, the signals extracted from alternative datasets can be used
on a standalone basis or combined with other signals as part of a quantitative strategy.
Independent usage is viable if the Sharpe ratio generated by a strategy based on a single
dataset is sufficiently high, but is rare in practice (see Chapter 4, Alpha Factor Research for
details on signal measurement and evaluation).

Quant firms are building libraries of alpha factors that may be weak signals individually
but can produce attractive returns in combination. As highlighted in Chapter 1, Machine
Learning for Trading, investment factors should be based on a fundamental and economic
rationale, otherwise, they are more likely the result of overfitting to historical data than to
persist and generate alpha on new data.

Signal decay due to competition is a serious concern, and as the alternative data ecosystem
evolves, it is unlikely that many datasets will retain meaningful Sharpe ratio signals.
Effective strategies to extend the half-life of the signal content of an alternative dataset
include exclusivity agreements or a focus on datasets that pose processing challenges to
raise the barriers to entry.

Alternative Data for Finance Chapter 3

[72]

Evaluation criteria
An alternative dataset can be evaluated based on the quality of its signal content,
qualitative aspects of the data, and various technical aspects.

Quality of the signal content
The signal content can be evaluated with respect to the target asset class, the investment
style, the relation to conventional risk premiums, and most importantly, its alpha content.

Asset classes
Most alternative datasets contain information directly relevant to equities and commodities.
Interesting datasets targeting investments in real estate have also multiplied after Zillow
successfully pioneered price estimates in 2006.

Alternative data on corporate credit is growing as alternative sources for monitoring
corporate payments, including for smaller businesses, are being developed. Data on fixed
income and around interest-rate projections is a more recent phenomenon but continues to
increase as more product sales and price information are being harvested at scale.

Investment style
The majority of datasets focus on specific sectors and stocks, and as such naturally appeal
to long-short equity investors. As the scale and scope of alternative data collection
continue to rise, alternative data will likely also become relevant for investors in macro
themes, such as consumer credit, activity in emerging markets, and commodity trends.

Some alternative datasets can be used as proxies for traditional measures of market risk,
while other signals are more relevant for high-frequency traders that use quantitative
strategies over a brief time horizon.

Risk premiums
Some alternative datasets, such as credit card payments or social media sentiment, have
been shown to produce signals that have a low correlation (lower than 5%) with traditional
risk premiums in equity markets, such as value, momentum, and quality of volatility. As a
result, combining signals derived from such alternative data with an algorithmic trading
strategy based on traditional risk factors can be an important building block toward a more
diversified risk premiums portfolio.

Alternative Data for Finance Chapter 3

[73]

Alpha content and quality
The signal strength required to justify the investment in an alternative dataset naturally
depends on its costs, and alternative data prices vary widely. Data that scores social
sentiment can be acquired for a few thousand dollars or less, while the cost of a dataset on
comprehensive and timely credit card payments can cost several million per year.

We will explore in detail how to evaluate trading strategies driven by alternative data using
historical data, so-called backtests, to estimate the amount of alpha contained in a dataset.
In isolated cases, a dataset may contain sufficient alpha signal to drive a strategy on a
standalone basis, but more typical is the combined use of various alternative and other
sources of data. In these cases, a dataset permits the extraction of weak signals that produce
a small positive Sharpe ratio that would not receive a capital allocation on its own but can
deliver a portfolio-level strategy when integrated with similar other signals. This is not
guaranteed, however, as there are also many alternative datasets that do not contain any
alpha content.

Besides evaluating a dataset's alpha content, it is also important to assess to which extent a
signal is incremental or orthogonal, that is, unique to a dataset, or already captured by
other data, and in the latter case compare the costs for this type of signal.

Finally, it is essential to evaluate the potential capacity of a strategy that relies on a given,
that is, the amount of capital that can be allocated without undermining its success because
a capacity limit will make it more difficult to recover the cost of the data.

Quality of the data
The quality of a dataset is another important criterion because it impacts the effort required
to analyze and monetize it, and the reliability of the predictive signal it contains. Quality
aspects include the data frequency and the length of its available history, the reliability or
accuracy of the information it contains, the extent to which it complies with current or
potential future regulations, and how exclusive its use is.

Legal and reputational risks
The use of alternative datasets may carry legal or reputational risk, in particular when they
include the following items:

Material Non-Public Information (MNPI) because it implies infringement of
insider trading regulations
Personally Identifiable Information (PII), primarily since the European Union
has enacted the General Data Protection Regulation (GDPR)

Alternative Data for Finance Chapter 3

[74]

Accordingly, legal and compliance requirements require thorough review. There could also
be conflicts of interest when the provider of the data is also a market participant who is
actively trading based on the dataset.

Exclusivity
The likelihood that an alternative dataset contains a signal that is sufficiently predictive to
drive a strategy on a stand-alone basis with a high Sharpe ratio for a meaningful period is
inversely related to its availability and ease of processing. In other words, the more
exclusive, and the harder to process the data, the better the chances that a dataset with
alpha content can drive a strategy without suffering rapid signal decay.

Public fundamental data that provides standard financial ratios contains little alpha and is
not attractive for a standalone strategy, but may help diversify a portfolio of risk factors.
Large, complex datasets will take more time to be absorbed by the market, and new
datasets continue to emerge on a frequent basis. Hence, it is essential to assess how familiar
other investors already are with a dataset, and whether the provider is the best source for
this type of information.

Additional benefits to exclusivity or being an early adopter of a new dataset may arise
when a business just begins to sell exhaust data that it generated for other purposes because
it may be possible to influence how the data is collected or curated, or to negotiate
conditions that limit access for competitors at least for a certain time period.

Time horizon
More extensive history is highly desirable to test the predictive power of a dataset under
different scenarios. The availability varies greatly between several months and several
decades and has important implications for the scope of the trading strategy that can be
built and tested based on the data. We mentioned some ranges for time horizons for
different datasets when introducing the main types of sources.

Frequency
The frequency of the data determines how often new information becomes available and
how differentiated a predictive signal can be over a given period. It also impacts the time
horizon of the investment strategy and ranges from intra-day, to daily, weekly, or an even
lower frequency.

Alternative Data for Finance Chapter 3

[75]

Reliability
Naturally, the degree to which the data accurately reflects what it intends to measure or
how well this can be verified is of significant concern and should be validated by means of
a thorough audit. This applies to both raw and processed data where the methodology
used to extract or aggregate information needs to be analyzed, taking into account the cost-
benefit ratio for the proposed acquisition.

Technical aspects
Technical aspects concern the latency or delay of reporting, and the format in which the
data is made available.

Latency
Data providers often provide resources in batches, and a delay can result from how the
data is collected, subsequent processing and transmission, as well as regulatory or legal
constraints.

Format
The data is made available in a broad range of formats, depending on the source. Processed
data will be in user-friendly formats and easily integrated into existing systems or queries
via a robust API. On the other end of the spectrum are voluminous data sources, such as
video, audio, or image data, or a proprietary format, that require more skills to be prepared
for analysis, but also provide higher barriers to entry for potential competitors.

The market for alternative data
The investment industry is going to spend an estimated to $2,000,000,000-3,000,000,000 on
data services in 2018, and this number is expected to grow at double digits per year in line
with other industries. This expenditure includes the acquisition of alternative data,
investments in related technology, and the hiring of qualified talent.

Alternative Data for Finance Chapter 3

[76]

A survey by Ernst and Young shows significant adoption of alternative data in 2017; 43% of
funds are using scraped web data, for instance, and almost 30% are experimenting with
satellite data. Based on the experience so far, fund managers considered scraped web data
and credit card data to be most insightful, in contrast to geolocation and satellite data,
which around 25% considered to be less informative:

Reflecting the rapid growth of this new industry, the market for alternative data providers
is quite fragmented. J.P. Morgan lists over 500 specialized data firms, while
AlternativeData.org lists over 300. Providers play numerous roles,
including intermediaries such as consultants, aggregators, and tech solutions; sell-side
supports deliver data in various formats, ranging from raw to semi-processed data or some
form of a signal extracted from one or more sources.

We will highlight the size of the main categories and profile a few prominent examples to
illustrate their diversity.

https://alternativedata.org/

Alternative Data for Finance Chapter 3

[77]

Data providers and use cases
AlternativeData.org (supported by provider Yipit) lists several categories that can serve
as a rough proxy for activity in various data-provider segments. Social sentiment analysis is
by far the largest category, while satellite and geolocation data have been growing rapidly
in recent years:

Product category Number of
providers Goals

Social sentiment 48 Raw or processed social media data; short-term
trends

Satellite 26 Aerial monitoring of medium-term economic
activity

Geolocation 22 Track retail, commercial real estate, or event foot
traffic

Web data and traffic 22 Monitor search interest, brand popularity, and
events

Credit and debit card
usage 14 Track near-term consumer spend and business

revenues
App usage 7 Monitor app sales or collect secondary data
Email and consumer
receipts 6 Track consumer spend by chain, brand, sector, or

geography
Weather 4 Crop and commodity-related longer-term trends
Other 87

The following brief examples aim to illustrate the broad range of service providers and
potential use cases.

Social sentiment data
Social sentiment analysis is most closely associated with Twitter data. Gnip was an early
social-media aggregator that provided data from numerous sites using an API and was
acquired by Twitter in 2014 for $134 million. Search engines are another source that became
prominent when researchers published in nature that investment strategies based on
Google Trends for terms such as debt could be used for a profitable trading strategy over
an extended period (see the GitHub repo https:/ /github. com/ PacktPublishing/ Hands-
On-Machine-Learning- for- Algorithmic- Trading for references).

https://alternativedata.org/
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading

Alternative Data for Finance Chapter 3

[78]

Dataminr
Dataminr was founded in 2009 and provides social-sentiment and news analysis based on
an exclusive agreement with Twitter. The company is one of the larger alternative
providers and raised an additional $392 million in funding in June 2018 led by Fidelity at a
$1,6 billion valuation, bringing total funding to $569 billion. It emphasizes real-time signals
extracted from social media feeds using machine learning and serves a wide range of
clients, including not only buy and sell-side investment firms but also news organizations
and the public sector.

StockTwits
StockTwits is a social network and micro-blogging platform where several hundred
thousand investment professionals share information and trading ideas in the form of
StockTwits that are viewed by a large audience across the financial web and social media
platforms. This data can be exploited because it may reflect investor sentiment or itself
drive trades that, in turn, impact prices. The references on GitHub contain a link to a paper
that builds a trading strategy on selected features.

RavenPack
RavenPack analyzes a large number of diverse, unstructured, text-based data to produce
structured indicators, including sentiment scores, that aim to contain information relevant
to investors. The underlying data sources range from premium newswires and regulatory
information to press releases and over 19,000 web publications. J.P. Morgan tested a long-
short sovereign bond and equity strategies based on sentiment scores and achieved positive
results with low correlation to conventional risk premiums (see references).

Satellite data
RS Metrics, founded in 2010, triangulates geospatial data from satellites, drones, and
airplanes with a focus on metals and commodities, as well as real-estate and industrial
applications. The company offers signals, predictive analytics, alerts, and end-user
applications based on its own high-resolution satellites. Use cases include the estimation of
retail traffic targeting certain chains or commercial real estate, as well as the production and
storage of certain common metals or employment at related production locations.

Alternative Data for Finance Chapter 3

[79]

Geolocation data
Advan, founded in 2015, serves hedge fund clients with signals derived from mobile phone
traffic data, targeting 1,600 tickers across various sectors in the US and EU. The company
collects data using apps that install geolocation codes on smartphones with explicit user
consent and track location using several channels (such as WiFi, Bluetooth, and cellular
signal) for enhanced accuracy. The uses cases include estimates of customer traffic at
physical store locations, which in turn can be used as input to models that predict top-line
revenues of traded companies.

Email receipt data
Eagle Alpha provides, among other services, data on a large set of online transactions using
email receipts, covering over 5000 retailers, including item—and SKU-level transaction data
categorized in 53 product groups. J.P. Morgan analyzed a time series dataset, starting in
2013, that covered a constant group of users active throughout the entire sample period.
The dataset contained total aggregate spend, number of orders, and the number of unique
buyers per period.

Working with alternative data
We will illustrate the acquisition of alternative data using web scraping, targeting first
OpenTable restaurant data, and then move to earnings call transcripts hosted by Seeking
Alpha.

Scraping OpenTable data
Typical sources of alternative data are review websites such as Glassdoor or Yelp that
convey insider insights using employee comments or guest reviews. This data provides
valuable input for ML models that aim to predict a business' prospects or directly its
market value to obtain trading signals.

Alternative Data for Finance Chapter 3

[80]

The data needs to be extracted from the HTML source, barring any legal obstacles. To
illustrate the web scraping tools that Python offers, we'll retrieve information on restaurant
bookings from OpenTable. Data of this nature could be used to forecast economic activity
by geography, real estate prices, or restaurant chain revenues.

Extracting data from HTML using requests and
BeautifulSoup
In this section, we will request and parse HTML source code. We will be using
the requests library to make Hyper Text Transfer Protocol (HTTP) requests and retrieve
the HTML source code, and BeautifulSoup to parse and extract the text content.

We will, however, encounter a common obstacle: websites may request certain information
from the server only after initial page-load using JavaScript. As a result, a direct HTTP
request will not be successful. To sidestep this type of protection, we will use a headless
browser that retrieves the website content as a browser would:

from bs4 import BeautifulSoup
import requests

set and request url; extract source code
url = "https://www.opentable.com/new-york-restaurant-listings"
html = requests.get(url)
html.text[:500]

' <!DOCTYPE html><html lang="en"><head><meta charset="utf-8"/><meta http-
equiv="X-UA-Compatible" content="IE=9; IE=8; IE=7; IE=EDGE"/>
<title>Restaurant Reservation Availability</title> <meta name="robots"
content="noindex" > </meta> <link rel="shortcut icon"
href="//components.otstatic.com/components/favicon/1.0.4/favicon/favicon.ic
o" type="image/x-icon"/><link rel="icon"
href="//components.otstatic.com/components/favicon/1.0.4/favicon/favicon-16
.png" sizes="16x16"/><link rel='

Now we can use BeautifulSoup to parse the HTML content, and then look for
all span tags with the class associated with the restaurant names that we obtain
by inspecting the source code, rest-row-name-text (see GitHub repo for linked
instructions to examine website source code):

parse raw html => soup object
soup = BeautifulSoup(html.text, 'html.parser')

for each span tag, print out text => restaurant name
for entry in soup.find_all(name='span', attrs={'class':'rest-row-name-

Alternative Data for Finance Chapter 3

[81]

text'}):
 print(entry.text)

Wade Coves
Alley
Dolorem Maggio
Islands
...

Once you have identified the page elements of interest, BeautifulSoup makes it easy to
retrieve the contained text. If you want to get the price category for each restaurant, you can
use:

get the number of dollars signs for each restaurant
for entry in soup.find_all('div', {'class':'rest-row-pricing'}):
 price = entry.find('i').text

When you try to get the number of bookings, however, you just get an empty list because
the site uses JavaScript code to request this information after the initial loading is complete:

soup.find_all('div', {'class':'booking'})
[]

Introducing Selenium – using browser automation
We will use the browser automation tool Selenium to operate a headless FireFox browser
that will parse the HTML content for us.

The following code opens the FireFox browser:

from selenium import webdriver

create a driver called Firefox
driver = webdriver.Firefox()

Let's close the browser:

close it
driver.close()

To retrieve the HTML source code using selenium and Firefox, do the following:

import time, re

visit the opentable listing page
driver = webdriver.Firefox()
driver.get(url)

Alternative Data for Finance Chapter 3

[82]

time.sleep(1) # wait 1 second

retrieve the html source
html = driver.page_source
html = BeautifulSoup(html, "lxml")

for booking in html.find_all('div', {'class': 'booking'}):
 match = re.search(r'\d+', booking.text)
 if match:
 print(match.group())

Building a dataset of restaurant bookings
Now you only need to combine all the interesting elements from the website to create a
feature that you could use in a model to predict economic activity in geographic regions or
foot traffic in specific neighborhoods.

With Selenium, you can follow the links to the next pages and quickly build a dataset of
over 10,000 restaurants in NYC that you could then update periodically to track a time
series. First, we set up a function that parses the content of the pages that we plan on
crawling:

def parse_html(html):
 data, item = pd.DataFrame(), {}
 soup = BeautifulSoup(html, 'lxml')
 for i, resto in enumerate(soup.find_all('div', class_='rest-row-
 info')):
 item['name'] = resto.find('span', class_='rest-row-name-
 text').text

 booking = resto.find('div', class_='booking')
 item['bookings'] = re.search('\d+', booking.text).group() if
 booking else 'NA'

 rating = resto.select('div.all-stars.filled')
 item['rating'] = int(re.search('\d+',
 rating[0].get('style')).group()) if rating else 'NA'

 reviews = resto.find('span', class_='star-rating-text--review-
 text')
 item['reviews'] = int(re.search('\d+', reviews.text).group()) if
reviews else 'NA'

 item['price'] = int(resto.find('div', class_='rest-row-
 pricing').find('i').text.count('$'))
 item['cuisine'] = resto.find('span', class_='rest-row-meta--

Alternative Data for Finance Chapter 3

[83]

 cuisine').text
 item['location'] = resto.find('span', class_='rest-row-meta--
 location').text
 data[i] = pd.Series(item)
 return data.T

Then, we start a headless browser that continues to click on the Next button for us and
capture the results displayed on each page:

restaurants = pd.DataFrame()
driver = webdriver.Firefox()
url = "https://www.opentable.com/new-york-restaurant-listings"
driver.get(url)
while True:
 sleep(1)
 new_data = parse_html(driver.page_source)
 if new_data.empty:
 break
 restaurants = pd.concat([restaurants, new_data], ignore_index=True)
 print(len(restaurants))
 driver.find_element_by_link_text('Next').click()
driver.close()

Websites continue to change, so this code may stop working at some point and will require
updating to follow the latest site navigation and bot detection.

One step further – Scrapy and splash
Scrapy is a powerful library to build bots that follow links, retrieve the content, and store
the parsed result in a structured way. In combination with the headless browser splash, it
can also interpret JavaScript and becomes an efficient alternative to Selenium. You can run
the spider using the scrapy crawl opentable command in the 01_opentable directory
where the results are logged to spider.log:

from opentable.items import OpentableItem
from scrapy import Spider
from scrapy_splash import SplashRequest

class OpenTableSpider(Spider):
 name = 'opentable'
 start_urls = ['https://www.opentable.com/new-york-restaurant-
 listings']

 def start_requests(self):
 for url in self.start_urls:
 yield SplashRequest(url=url,

Alternative Data for Finance Chapter 3

[84]

 callback=self.parse,
 endpoint='render.html',
 args={'wait': 1},
)

 def parse(self, response):
 item = OpentableItem()
 for resto in response.css('div.rest-row-info'):
 item['name'] = resto.css('span.rest-row-name-
 text::text').extract()
 item['bookings'] =
 resto.css('div.booking::text').re(r'\d+')
 item['rating'] = resto.css('div.all-
 stars::attr(style)').re_first('\d+')
 item['reviews'] = resto.css('span.star-rating-text--review-
 text::text').re_first(r'\d+')
 item['price'] = len(resto.css('div.rest-row-pricing >
 i::text').re('\$'))
 item['cuisine'] = resto.css('span.rest-row-meta--
 cuisine::text').extract()
 item['location'] = resto.css('span.rest-row-meta--
 location::text').extract()
 yield item

There are numerous ways to extract information from this data beyond the reviews and
bookings of individual restaurants or chains.

We could further collect and geo-encode the restaurants' addresses, for instance, to link the
restaurants' physical location to other areas of interest, such as popular retail spots or
neighborhoods to gain insights into particular aspects of economic activity. As mentioned
before, such data will be most valuable in combination with other information.

Earnings call transcripts
Textual data is an essential alternative data source. One example of textual information is
transcripts of earnings calls where executives do not only present the latest financial results,
but also respond to questions by financial analysts. Investors utilize transcripts to evaluate
changes in sentiment, emphasis on particular topics, or style of communication.

We will illustrate the scraping and parsing of earnings call transcripts from the popular
trading website www.seekingalpha.com:

import re
from pathlib import Path
from time import sleep

http://seekingalpha.com/

Alternative Data for Finance Chapter 3

[85]

from urllib.parse import urljoin
from bs4 import BeautifulSoup
from furl import furl
from selenium import webdriver

transcript_path = Path('transcripts')

SA_URL = 'https://seekingalpha.com/'
TRANSCRIPT = re.compile('Earnings Call Transcript')

next_page = True
page = 1
driver = webdriver.Firefox()
while next_page:
 url = f'{SA_URL}/earnings/earnings-call-transcripts/{page}'
 driver.get(urljoin(SA_URL, url))
 response = driver.page_source
 page += 1
 soup = BeautifulSoup(response, 'lxml')
 links = soup.find_all(name='a', string=TRANSCRIPT)
 if len(links) == 0:
 next_page = False
 else:
 for link in links:
 transcript_url = link.attrs.get('href')
 article_url = furl(urljoin(SA_URL,
 transcript_url)).add({'part': 'single'})
 driver.get(article_url.url)
 html = driver.page_source
 meta, participants, content = parse_html(html)
 meta['link'] = link

driver.close()

Parsing HTML using regular expressions
To collect structured data from the unstructured transcripts, we can use regular expressions
in addition to BeautifulSoup.

They allows us to collect detailed information not only about the earnings call company
and timing but also capture who was present and attribute the statements to analysts and
company representatives:

def parse_html(html):
 date_pattern = re.compile(r'(\d{2})-(\d{2})-(\d{2})')
 quarter_pattern = re.compile(r'(\bQ\d\b)')

Alternative Data for Finance Chapter 3

[86]

 soup = BeautifulSoup(html, 'lxml')

 meta, participants, content = {}, [], []
 h1 = soup.find('h1', itemprop='headline').text
 meta['company'] = h1[:h1.find('(')].strip()
 meta['symbol'] = h1[h1.find('(') + 1:h1.find(')')]

 title = soup.find('div', class_='title').text
 match = date_pattern.search(title)
 if match:
 m, d, y = match.groups()
 meta['month'] = int(m)
 meta['day'] = int(d)
 meta['year'] = int(y)

 match = quarter_pattern.search(title)
 if match:
 meta['quarter'] = match.group(0)

 qa = 0
 speaker_types = ['Executives', 'Analysts']
 for header in [p.parent for p in soup.find_all('strong')]:
 text = header.text.strip()
 if text.lower().startswith('copyright'):
 continue
 elif text.lower().startswith('question-and'):
 qa = 1
 continue
 elif any([type in text for type in speaker_types]):
 for participant in header.find_next_siblings('p'):
 if participant.find('strong'):
 break
 else:
 participants.append([text, participant.text])
 else:
 p = []
 for participant in header.find_next_siblings('p'):
 if participant.find('strong'):
 break
 else:
 p.append(participant.text)
 content.append([header.text, qa, '\n'.join(p)])
 return meta, participants, content

Alternative Data for Finance Chapter 3

[87]

We store the result in several .csv files for easy access when we use ML to process natural
language:

def store_result(meta, participants, content):
 path = transcript_path / 'parsed' / meta['symbol']
 if not path.exists():
 path.mkdir(parents=True, exist_ok=True)
 pd.DataFrame(content, columns=['speaker', 'q&a',
 'content']).to_csv(path / 'content.csv', index=False)
 pd.DataFrame(participants, columns=['type', 'name']).to_csv(path /
 'participants.csv', index=False)
 pd.Series(meta).to_csv(path / 'earnings.csv'

See README in the GitHub repo for additional details and references for further resources to
develop web-scraping applications.

Summary
In this chapter, we introduced new sources of alternative data made available as a result of
the big data revolution, including individuals, business processes, and sensors, such as
satellites or GPS location devices. We presented a framework to evaluate alternative
datasets from an investment perspective and laid out key categories and providers to help
you navigate this vast and quickly-expanding area that provides critical inputs for
algorithmic trading strategies that use ML.

We explored powerful Python tools to collect your own datasets at scale so that you can
potentially work on getting your private informational edge as an algorithmic trader using
web scraping.

We will now proceed, in the following chapter, to the design and evaluation of alpha
factors that produce trading signals, and look at how to combine them in a portfolio
context.

4
Alpha Factor Research

 Algorithmic trading strategies are driven by signals that indicate when to buy or sell assets
to generate positive returns relative to a benchmark. The portion of an asset's return that is
not explained by exposure to the benchmark is called alpha, and hence these signals are
also called alpha factors.

Alpha factors aim to predict the price movements of assets in the investment
universe based on the available market, fundamental, or alternative data. A factor may
combine one or several input variables, but assumes a single value for each asset every time
the strategy evaluates the factor. Trade decisions typically rely on relative values across
assets. Trading strategies are often based on signals emitted by multiple factors, and we
will see that machine learning (ML) models are particularly well suited to integrate the
various signals efficiently to make more accurate predictions.

The design, evaluation, and combination of alpha factors are critical steps during the
research phase of the algorithmic trading strategy workflow, as shown in the following
diagram. We will focus on the research phase in this Chapter 4, Strategy Evaluation, and the
execution phase in the next chapter. The remainder of this book will then focus on the use
of ML to discover and combine alpha factors. Take a look at the following figure:

Alpha Factor Research Chapter 4

[89]

This chapter will use a simple mean-reversal factor to introduce the algorithmic trading
simulator zipline that is written in Python and facilitates the testing of alpha factors for a
given investment universe. We will also use zipline when we backtest trading strategies
in a portfolio context in the next chapter. Next, we will discuss key metrics to evaluate the
predictive performance of alpha factors, including the information coefficient and the
information ratio, which leads to the fundamental law of active management.

In particular, this chapter will address the following topics:

How to characterize, justify and measure key types of alpha factors
How to create alpha factors using financial feature engineering
How to use zipline offline to test individual alpha factors
How to use zipline on Quantopian to combine alpha factors and identify more
sophisticated signals
How the information coefficient (IC) measures an alpha factor's predictive
performance
How to use alphalens to evaluate predictive performance and turnover

Engineering alpha factors
Alpha factors are transformations of market, fundamental, and alternative data that contain
predictive signals. They are designed to capture risks that drive asset returns. One set of
factors describes fundamental, economy-wide variables such as growth, inflation, volatility,
productivity, and demographic risk. Another set consists of tradeable investment styles
such as the market portfolio, value-growth investing, and momentum investing.

There are also factors that explain price movements based on the economics or institutional
setting of financial markets, or investor behavior, including known biases of this
behavior. The economic theory behind factors can be rational, where the factors have high
returns over the long run to compensate for their low returns during bad times, or
behavioral, where factor risk premiums result from the possibly biased, or not entirely
rational behavior of agents that is not arbitraged away.

Alpha Factor Research Chapter 4

[90]

There is a constant search for and discovery of new factors that may better capture known
or reflect new drivers of returns. Jason Hsu, the co-founder of Research Affiliates which
manages close to $200 Bn, identified some 250 factors that had been published with
empirical evidence in reputable journals by 2015 and estimated that this number was likely
to increase by 40 factors per year. To avoid false discoveries and ensure a factor delivers
consistent results, it should have a meaningful economic intuition that makes it plausible
that it reflects risks that the market would compensate.

The data transformations include simple arithmetic such as absolute or relative changes of a
variable over time, ratios between data series, or aggregations over a time window such as
a simple or exponential moving average. They also include calculations that have emerged
from the technical analysis of price patterns such as the relative strength index of demand
versus supply and numerous metrics familiar from the fundamental analysis of securities.

Important factor categories
In an idealized world, categories of risk factors should be independent of each other
(orthogonal), yield positive risk premia, and form a complete set that spans all dimensions
of risk and explains the systematic risks for assets in a given class. In practice, these
requirements will hold only approximately. We will address how to derive synthetic, data-
driven risk factors using unsupervised learning, in particular principal and independent
component analysis in Chapter 12, Unsupervised Learning.

We will review the key categories for factors derived from market, fundamental, and
alternative data, and typical metrics used to capture them. We will also demonstrate how
to implement these factors for algorithms tested on the Quantopian platform using built-in
factors, custom computations using numpy and pandas, or the talib library for technical
analysis.

Momentum and sentiment factors
Momentum investing follows the adage: the trend is your friend or let your winners
run. Momentum risk factors are designed to go long assets that have performed well while
going short assets with poor performance over a certain period.

The premise of strategies relying on this factor is that asset prices exhibit a trend, reflected
in positive serial correlations. Such price momentum would defy the hypothesis of efficient
markets which states that past price returns alone cannot predict future performance.
Despite theoretical arguments to the contrary, price momentum strategies have produced
positive returns across asset classes and are an important part of many trading strategies.

Alpha Factor Research Chapter 4

[91]

Rationale
Reasons for the momentum effect point to investor behavior, persistent supply, and
demand imbalances, a positive feedback loop between risk assets and the economy, or the
market microstructure.

The behavioral reasons reflect biases of under-reaction and over-reaction to market news as
investors process new information at different speeds. After an initial under-reaction to
news, investors often extrapolate past behavior and create price momentum. The
technology stocks rally during the late 90s market bubble was an extreme example. A fear
and greed psychology also motivates investors to increase exposure to winning assets
and continue selling losing assets.

Momentum can also have fundamental drivers such as a positive feedback loop between
risk assets and the economy. Economic growth boosts equities, and the resulting wealth
effect feeds back into the economy through higher spending, again fueling growth. Positive
feedback between prices and the economy often extends momentum in equities and credit
to longer horizons than for bonds, FX, and commodities, where negative feedback creates
reversals, requiring a much shorter investment horizon. Another cause of momentum can
be persistent demand-supply imbalances due to market frictions, for example, when
commodity production takes significant amounts of time to adjust to demand trends. Oil
production may lag increased demand from a booming economy for years, and persistent
supply shortages can trigger and support upward price momentum.

Market microstructure effects can also create price momentum related to behavioral
patterns that motivate investors to buy products and implement strategies that mimic their
biases. For example, the trading wisdom to cut losses and let profits run has investors use
trading strategies such as stop loss, constant proportion portfolio insurance (CPPI),
dynamical delta hedging, or option-based strategies such as protective puts. These
strategies create momentum because they imply an advance commitment to sell when an
asset underperforms and buy when it outperforms. Similarly, risk parity strategies (see the
next chapter) tend to buy low-volatility assets that often exhibit positive performance and
sell high-volatility assets that often had negative performance. The automatic rebalancing
of portfolios using these strategies tends to reinforce price momentum.

Alpha Factor Research Chapter 4

[92]

Key metrics
Momentum factors are typically derived from changes in price time series by identifying
trends and patterns. They can be constructed based on absolute or relative return, by
comparing a cross-section of assets or analyzing an asset's time series, within or across
traditional asset classes, and at different time horizons.

A few popular illustrative indicators are listed in the following table:

Factor Description

Relative
Strength
Indicator (RSI)

The RSI compares recent price changes across stocks to identify stocks as
overbought or oversold. A high RSI (example, above 70) indicates
overbought, and a low RSI (example below 30) indicates oversold. It uses
the average price change for a given number of prior trading days with
positive price changes and negative prices changes to
compute:

Price momentum

This factor computes the total return for a given number of prior trading
days. In the academic literature, it is common to use the last 12 months
but exclude the most recent month because of a short-term reversal effect
frequently observed in most recent price movements, but shorter periods
have also been widely used.

12-month price
momentum Vol
Adj

The 12-month price momentum adjusted for volatility factor normalizes
the total return over the previous 12 months by dividing it by the
standard deviation of these returns.

Price acceleration

Price acceleration calculates the gradient of the trend (adjusted for
volatility) using a linear regression on daily prices for a longer and a
shorter period, e.g., a one year and three months of trading days and
compares the change in the slope as a measure of price acceleration.

Percent Off 52
week high

This factor uses the percent difference between the most recent and the
highest price for the last 52 weeks.

Additional sentiment indicators include the following:

Factor Description

Earnings estimates
count

This metric ranks stocks by the number of consensus estimates as
a proxy for analyst coverage and information uncertainty. A
higher value is more desirable.

Alpha Factor Research Chapter 4

[93]

N month change in
recommendation

This factor ranks stocks by the change in consensus
recommendation over the prior N month, where improvements
are desirable (regardless of whether they have moved from
strong sell to sell or buy to strong buy and so on).

12-month change in
shares outstanding

This factor measures the change in a company's split-adjusted
share count over the last 12 months, where a negative change
implies share buybacks and is desirable because it signals that
management views the stock as cheap relative to its intrinsic and,
hence, future value.

6-month change in
target price

The metric tracks the 6-month change in mean analyst target
price and a higher positive change is naturally more desirable.

Net earnings revisions
This factor expresses the difference between upward and
downward revisions to earnings estimates as a percentage of the
total number of revisions.

Short interest to shares
outstanding

This measure is the percentage of shares outstanding currently
being sold short, that is, sold by an investor who has borrowed
the share and needs to repurchase it at a later day while
speculating that its price will fall. Hence, a high level of short
interest indicates negative sentiment and is expected to signal
poor performance going forward.

Value factors
Stocks with low prices relative to their fundamental value tend to deliver returns in excess
of a capitalization-weighted benchmark. Value factors reflect this correlation and are
designed to provide signals to buy undervalued assets, that is, those that are relatively
cheap and sell those that are overvalued and expensive. For this reason, at the core of any
value strategy is a valuation model that estimates or proxies the asset's fair or fundamental
value. Fair value can be defined as an absolute price level, a spread relative to other assets,
or a range in which an asset should trade (for example, two standard deviations).

Value strategies rely on mean-reversion of prices to the asset's fair value. They assume that
prices only temporarily move away from fair value due to either behavioral effects, such as
overreaction or herding, or liquidity effects such as temporary market impact or long-term
supply/demand frictions. Since value factors rely on mean-reversion, they often exhibit
properties opposite to those of momentum factors. For equities, the opposite to value stocks
are growth stocks with a high valuation due to growth expectations.

Alpha Factor Research Chapter 4

[94]

Value factors enable a broad array of systematic strategies including fundamental and
market valuation, statistical arbitrage, and cross-asset relative value. They are often
implemented as long/short portfolios without exposure to other traditional or alternative
risk factors.

Fundamental value strategies derive fair asset values from economic and fundamental
indicators that depend on the target asset class. In fixed income, currencies, and
commodities, indicators include, for example, levels and changes in the capital account
balance, economic activity, inflation, or fund flows. In equities and corporate credit, value
factors go back to Graham and Dodd's Security Analysis in the 1930s, since made famous
by Warren Buffet. Equity value approaches compare a stock price to fundamental metrics
such as book value, top line sales, bottom line earnings, or various cash-flow metrics.

Market value strategies use statistical or machine learning models to identify mispricing
due to inefficiencies in liquidity provision. Statistical and Index Arbitrage are prominent
examples that capture the reversion of temporary market impacts over short time horizons
(we will cover pairs trading in the next chapter). Over longer time horizons, market value
trades also leverage seasonal effects in equities and commodities.

Cross-asset relative value strategies focus on the relative mispricing of different assets. For
example, convertible bond arbitrage involves trades on the relative value between the
stock, credit, and volatility of a single company. Relative value also includes trades between
credit and equity volatility, using credit signals to trade equities or relative value trades
between commodities and equities.

Rationale
There are both rational and behavioral explanations for the existence of the value effect. We
will cite a few prominent examples from a wealth of research with further references listed
in the GitHub repository.

In the rational, efficient markets view, the value premium compensates for higher real or
perceived risks. Researchers have presented evidence that value firms have less flexibility
to adapt to the unfavorable economic environments than leaner and more flexible growth
companies, or that value stock risks relate to high financial leverage and more uncertain
future earnings. Value and small-cap portfolios have also been shown to be more sensitive
to macro shocks than growth and large-cap portfolios.

Alpha Factor Research Chapter 4

[95]

From a behavioral perspective, the value premium can be explained by loss aversion and
mental accounting biases. Investors may be less concerned about losses on assets with a
strong recent performance due to the cushions offered by prior gains. This loss aversion
bias induces investors to perceive the stock as less risky than before and discount its future
cash flows at a lower rate. Conversely, poor recent performance may lead investors to raise
the asset's discount rate. The differential return expectations result in a value premium
since growth stocks with a high price multiple relative to fundamentals have done well in
the past but, going forward, investors will require a lower average return due to their
biased perception of lower risks, while the inverse is true for value stocks.

Key metrics
There is a large number of valuation proxies computed from fundamental data. These
factors can be combined as inputs into a machine learning valuation model to predict
prices. We will see examples of how some of these factors are used in practice in the
following chapters:

Factor Description

Cash flow yield

The ratio divides the operational cash flow per share by the share price.
A higher ratio implies better cash returns for shareholders (if paid out
using dividends or share buybacks, or profitably reinvested in the
business).

Free cash flow
yield

The ratio divides the free cash flow per share, which reflects the amount
of cash available for distribution after necessary expenses and
investments, by the share price. Higher and growing free cash flow yield
is commonly viewed as a signal of outperformance.

Cash flow return
on invested
capital (CFROIC)

CFROIC measures a company's cash flow profitability. It divides
operating cash flow by invested capital, defined as total debt plus net
assets. A higher return means the business has more cash for a given
amount of invested capital, generating more value for shareholders.

Cash flow to total
assets

This ratio divides operational cash flow by total assets and indicates
how much cash a company can generate relative to its assets, where a
higher ratio is better similar as for CFROIC.

Free cash flow to
enterprise value

This ratio measures the free cash flow that a company generates relative
to its enterprise value, measured as the combined value of equity and
debt.

EBITDA to
enterprise value

This ratio measures a company's EBITDA (Earnings before interest,
taxes, depreciation, and amortization), which is a proxy for cash flow
relative to its enterprise value.

Alpha Factor Research Chapter 4

[96]

Earnings yield (1
Yr trailing)

This ratio divides the sum of earnings for the past 12 months by the last
market (close) price.

Earnings yield (1
Yr forward)

Instead of actual historical earnings, this ratio divides a rolling 12 month
forward consensus analyst earnings estimate by the last price, where
consensus consists in a (possibly weighted) average of forecasts.

PEG ratio

The Price/Earnings to Growth (PEG) ratio divides a stock's price-to-
earnings (P/E) ratio by the earnings growth rate for a given period. The
ratio adjusts the price paid for a dollar of earnings (measured by the P/E
ratio) by the company's earnings growth.

P/E 1 Yr Forward
Relative to sector

Forecast P/E ratio relative to the corresponding sector P/E. It aims
to alleviate the sector bias of the generic P/E ratio by accounting for
sector differences in valuation.

Sales yield
The ratio measures the valuation of a stock relative to its ability to
generate revenues. All else equal, stocks with higher historical sales to
price ratios are expected to outperform.

Sales yield FY1 The forward sales to price ratio uses analyst sales forecast, combined to a
(weighted) average.

Book value yield The ratio divides the historical book value by the share price.

Dividend yield
The current annualized dividend divided by the last close price.
Discounted cash flow valuation assumes a company's market value
equates to the present value of its future cash flows.

Volatility and size factors
The low volatility factor captures excess returns on stocks with volatility, beta or
idiosyncratic risk below average. Stocks with a larger market capitalization tend to have
lower volatility so that the traditional size factor is often combined with the more recent
volatility factor.

The low volatility anomaly is an empirical puzzle that is at odds with basic principles of
finance. The Capital Asset Pricing Model (CAPM) and other asset pricing models assert
that higher risk should earn higher returns, but in numerous markets and over extended
periods, the opposite has been true with less risky assets outperforming their riskier peers.

Rationale
The low volatility anomaly contradicts the hypothesis of efficient markets and the CAPM
assumptions. Instead, several behavioral explanations have been advanced.

Alpha Factor Research Chapter 4

[97]

The lottery effect builds on empirical evidence that individuals take on bets that resemble
lottery tickets with a small expected loss but a large potential win, even though this large
win may have a fairly low probability. If investors perceive the risk-return profile of a low
price, volatile stock as similar to a lottery ticket, then it could be an attractive bet. As a
result, investors may overpay for high volatility stocks and underpay for low volatility
stocks due to their biased preferences. The representativeness bias suggests that investors
extrapolate the success of a few, well-publicized volatile stocks to all volatile stocks while
ignoring the speculative nature of such stocks.

Investors may also be overconfident in their ability to forecast the future, and their
differences in opinions are higher for volatile stocks with more uncertain outcomes. Since it
is easier to express a positive view by going long, that is, owning an asset than a negative
view by going short, optimists may outnumber pessimists and keep driving up the price of
volatile stocks, resulting in lower returns.

Furthermore, investors behave differently in bull markets and during crises. During bull
markets, the dispersion of betas is much lower so that low volatility stocks do not
underperform much if at all, whereas, during crises, investors seek or keep low-volatility
stocks and the beta dispersion increases. As a result, lower volatility assets and portfolios
do better over the long term.

Key metrics
Metrics used to identify low volatility stocks cover a broad spectrum, with realized
volatility (standard deviation) on one end, and forecast (implied) volatility and correlations
on the other end. Some operationalize low volatility as low beta. The evidence in favor of
the volatility anomaly appears robust for different metrics.

Quality factors
The quality factor aims to capture the excess return on companies that are highly profitable,
operationally efficient, safe, stable and well-governed, in short, high quality, versus the
market. The markets also appear to reward relative earnings certainty and penalize stocks
with high earnings volatility. A portfolio tilt towards businesses with high quality has been
long advocated by stock pickers that rely on fundamental analysis but is a relatively new
phenomenon in quantitative investments. The main challenge is how to define the quality
factor consistently and objectively using quantitative indicators, given the subjective nature
of quality.

Alpha Factor Research Chapter 4

[98]

Strategies based on standalone quality factors tend to perform in a counter-cyclical way as
investors pay a premium to minimize downside risks and drive up valuations. For this
reason, quality factors are often combined with other risk factors in a multi-factor strategy,
most frequently with value to produce the quality at a reasonable price strategy. Long-short
quality factors tend to have negative market beta because they are long quality stocks that
are also low volatility, and short more volatile, low-quality stocks. Hence, quality factors
are often positively correlated with low volatility and momentum factors, and negatively
correlated with value and broad market exposure.

Rationale
Quality factors may signal outperformance because superior fundamentals such as
sustained profitability, steady growth in cash flow, prudent leveraging, a low need for
capital market financing or low financial risk underpin the demand for equity shares and
support the price of such companies in the long run. From a corporate finance perspective,
a quality company often manages its capital carefully and reduces the risk of over-
leveraging or over-capitalization.

A behavioral explanation suggests that investors under-react to information about quality,
similar to the rationale for momentum where investors chase winners and sell losers.
Another argument for quality premia is a herding argument similar to growth stocks. Fund
managers may find it easier to justify buying a company with strong fundamentals even
when it is getting expensive rather than a more volatile (risky) value stock.

Key metrics
Quality factors rely on metrics computed from the balance sheet and income statement that
indicate profitability reflected in high profit or cash flow margins, operating efficiency,
financial strength, and competitiveness more broadly because it implies the ability to
sustain a profitability position over time.

Hence, quality has been measured using gross profitability (which has been recently added
to the Fama—French factor model, see Chapter 7, Linear Models), return on invested capital,
low earnings volatility, or a combination of various profitability, earnings quality, and
leverage metrics, with some options listed in the following table.

Alpha Factor Research Chapter 4

[99]

Earnings management is mainly exercised by manipulating accruals. Hence, the size of
accruals is often used as a proxy for earnings quality: higher total accruals relative to assets
make low earnings quality more likely. However, this is not unambiguous as accruals can
reflect earnings manipulation just as well as accounting estimates of future business
growth:

Factor Description

Asset turnover
This factor measures how efficiently a company uses its assets, which
require capital, to produce revenue and is calculated by dividing sales by
total assets; higher turnover is better.

Asset turnover
12 month
change

This factor measures a change in management's efficiency in using assets
to produce revenue over the last year. Stocks with the highest level of
efficiency improvements are typically expected to outperform.

Current Ratio

The current ratio is a liquidity metric that measures a company's ability to
pay short-term obligations. It compares a company's current assets to its
current liabilities, and a higher current ratio is better from a quality
perspective.

Interest
coverage

This factor measures how easily a company will be able to pay interest on
its debt. It is calculated by dividing a company's EBIT (Earnings before
interest and taxes) by its interest expense. A higher ratio is desirable.

Leverage
A firm with significantly more debt than equity is considered to be highly
leveraged. The debt-to-equity ratio is typically inversely related to
prospects, with lower leverage being better.

Payout ratio
The amount of earnings paid out in dividends to shareholders. Stocks with
higher payout ratios were allocated to the top decile while those with
lower payout ratios to the bottom decile.

Return on
equity (ROE)

Ranks stocks based on their historical return on equity and allocates those
with the highest ROE to the top decile.

How to transform data into factors
Based on a conceptual understanding of key factor categories, their rationale and popular
metrics, a key task is to identify new factors that may better capture the risks embodied by
the return drivers laid out previously, or to find new ones. In either case, it will be
important to compare the performance of innovative factors to that of known factors to
identify incremental signal gains.

Alpha Factor Research Chapter 4

[100]

Useful pandas and NumPy methods
NumPy and pandas are the key tools for custom factor computations. The Notebook 00-
data-prep.ipynb in the data directory contains examples of how to create various factors.
The notebook uses data generated by the get_data.py script in the data folder in the root
directory of the GitHub repo and stored in HDF5 format for faster access. See the notebook
storage_benchmarks.ipynb in the directory for Chapter 2, Market and Fundamental Data,
on the GitHub repo for a comparison of parquet, HDF5, and csv storage formats for
pandas DataFrames.

The following illustrates some key steps in computing selected factors from raw stock data.
See the Notebook for additional detail and visualizations that we have omitted here to save
some space.

Loading the data
We load the Quandl stock price datasets covering the US equity markets 2000-18 using
pd.IndexSlice to perform a slice operation on the pd.MultiIndex, select the adjusted
close price and unpivot the column to convert the DataFrame to wide format with tickers in
the columns and timestamps in the rows:

idx = pd.IndexSlice
with pd.HDFStore('../../data/assets.h5') as store:
 prices = store['quandl/wiki/prices'].loc[idx['2000':'2018', :],
 'adj_close'].unstack('ticker')

prices.info()
DatetimeIndex: 4706 entries, 2000-01-03 to 2018-03-27
Columns: 3199 entries, A to ZUMZ

Resampling from daily to monthly frequency
To reduce training time and experiment with strategies for longer time horizons, we
convert the business-daily data to month-end frequency using the available adjusted close
price:

monthly_prices = prices.resample('M').last()

Alpha Factor Research Chapter 4

[101]

Computing momentum factors
To capture time series dynamics that capture, for example, momentum patterns, we
compute historical returns using the pct_change(n_periods), that is, returns over
various monthly periods as identified by lags. We then convert the wide result back to
long format using .stack(), use .pipe() to apply the .clip() method to the resulting
DataFrame and winsorize returns at the [1%, 99%] levels; that is, we cap outliers at these
percentiles.

Finally, we normalize returns using the geometric average. After using .swaplevel() to
change the order of the MultiIndex levels, we obtain compounded monthly returns for six
periods ranging from 1 to 12 months:

outlier_cutoff = 0.01
data = pd.DataFrame()
lags = [1, 2, 3, 6, 9, 12]
for lag in lags:
 data[f'return_{lag}m'] = (monthly_prices
 .pct_change(lag)
 .stack()
 .pipe(lambda x:
x.clip(lower=x.quantile(outlier_cutoff),
 upper=x.quantile(1-outlier_cutoff)))
 .add(1)
 .pow(1/lag)
 .sub(1)
)
data = data.swaplevel().dropna()
data.info()

MultiIndex: 521806 entries, (A, 2001-01-31 00:00:00) to (ZUMZ, 2018-03-
 31 00:00:00)
Data columns (total 6 columns):
return_1m 521806 non-null float64
return_2m 521806 non-null float64
return_3m 521806 non-null float64
return_6m 521806 non-null float64
return_9m 521806 non-null float64
return_12m 521806 non-null float6

Alpha Factor Research Chapter 4

[102]

We can use these results to compute momentum factors based on the difference between
returns over longer periods and the most recent monthly return, as well as for the
difference between 3 and 12 month returns as follows:

for lag in [2,3,6,9,12]:
 data[f'momentum_{lag}'] = data[f'return_{lag}m'].sub(data.return_1m)
data[f'momentum_3_12'] = data[f'return_12m'].sub(data.return_3m)

Using lagged returns and different holding periods
To use lagged values as input variables or features associated with the current
observations, we use the .shift() method to move historical returns up to the current
period:

for t in range(1, 7):
 data[f'return_1m_t-{t}'] =
data.groupby(level='ticker').return_1m.shift(t)

Similarly, to compute returns for various holding periods, we use the normalized period
returns computed previously and shift them back to align them with the current financial
features:

for t in [1,2,3,6,12]:
 data[f'target_{t}m'] =
data.groupby(level='ticker')[f'return_{t}m'].shift(-t)

Compute factor betas
We will introduce the Fama—French data to estimate the exposure of assets to common
risk factors using linear regression in Chapter 8, Time Series Models. The five Fama—French
factors, namely market risk, size, value, operating profitability, and investment have been
shown empirically to explain asset returns and are commonly used to assess the risk/return
profile of portfolios. Hence, it is natural to include past factor exposures as financial
features in models that aim to predict future returns.

We can access the historical factor returns using the pandas-datareader and estimate
historical exposures using the PandasRollingOLS rolling linear regression functionality in
the pyfinance library as follows:

factors = ['Mkt-RF', 'SMB', 'HML', 'RMW', 'CMA']
factor_data = web.DataReader('F-F_Research_Data_5_Factors_2x3',
 'famafrench', start='2000')[0].drop('RF', axis=1)
factor_data.index = factor_data.index.to_timestamp()
factor_data = factor_data.resample('M').last().div(100)
factor_data.index.name = 'date'

Alpha Factor Research Chapter 4

[103]

factor_data = factor_data.join(data['return_1m']).sort_index()

T = 24
betas = (factor_data
 .groupby(level='ticker', group_keys=False)
 .apply(lambda x: PandasRollingOLS(window=min(T, x.shape[0]-1),
y=x.return_1m, x=x.drop('return_1m', axis=1)).beta))

We will explore both the Fama—French factor model and linear regression in Chapter 7,
Linear Models in more detail. See the notebook for additional examples.

Built-in Quantopian factors
The accompanying notebook factor_library.ipynb contains numerous example factors
that are either provided by the Quantopian platform or computed from data sources
available using the research API from a Jupyter Notebook.

There are built-in factors that can be used, in combination with quantitative Python
libraries, in particular numpy and pandas, to derive more complex factors from a broad
range of relevant data sources such as US Equity prices, Morningstar fundamentals, and
investor sentiment.

For instance, the price-to-sales ratio, the inverse of the sales yield introduce preceding, is
available as part of the Morningstar fundamentals dataset. It can be used as part of a
pipeline that is further described as we introduce the zipline library.

TA-Lib
The TA-Lib library includes numerous technical factors. A Python implementation is
available for local use, for example, with zipline and alphalens, and it is also available
on the Quantopian platform. The notebook also illustrates several technical indicators
available using TA-Lib.

Alpha Factor Research Chapter 4

[104]

Seeking signals – how to use zipline
Historically, alpha factors used a single input and simple heuristics, thresholds or quantile
cutoffs to identify buy or sell signals. ML has proven quite effective in extracting signals
from a more diverse and much larger set of input data, including other alpha factors based
on the analysis of historical patterns. As a result, algorithmic trading strategies today
leverage a large number of alpha signals, many of which may be weak individually but can
yield reliable predictions when combined with other model-driven or traditional factors by
an ML algorithm.

The open source zipline library is an event-driven backtesting system maintained and
used in production by the crowd-sourced quantitative investment fund Quantopian
(https://www.quantopian. com/) to facilitate algorithm-development and live-trading. It
automates the algorithm's reaction to trade events and provides it with current and
historical point-in-time data that avoids look-ahead bias.

You can use it offline in conjunction with data bundles to research and evaluate alpha
factors. When using it on the Quantopian platform, you will get access to a wider set of
fundamental and alternative data. We will also demonstrate the Quantopian research
environment in this chapter, and the backtesting IDE in the next chapter. The code for this
section is in the 01_factor_research_evaluation sub-directory of the GitHub repo
folder for this chapter.

After installation and before executing the first algorithm, you need to ingest a data bundle
that by default consists of Quandl's community-maintained data on stock prices, dividends
and splits for 3,000 US publicly-traded companies. You need a Quandl API key to run the
following code that stores the data in your home folder
under ~/.zipline/data/<bundle>:

$ QUANDL_API_KEY=<yourkey> zipline ingest [-b <bundle>]

https://www.quantopian.com/
https://www.quantopian.com/
https://www.quantopian.com/
https://www.quantopian.com/
https://www.quantopian.com/
https://www.quantopian.com/
https://www.quantopian.com/
https://www.quantopian.com/
https://www.quantopian.com/
https://www.quantopian.com/

Alpha Factor Research Chapter 4

[105]

The architecture – event-driven trading
simulation
A zipline algorithm will run for a specified period after an initial setup and executes its
trading logic when specific events occur. These events are driven by the trading frequency
and can also be scheduled by the algorithm, and result in zipline calling certain methods.
The algorithm maintains state through a context dictionary and receives actionable
information through a data variable containing point-in-time (PIT) current and historical
data. The algorithm returns a DataFrame containing portfolio performance metrics if there
were any trades, as well as user-defined metrics that can be used to record, for example, the
factor values.

You can execute an algorithm from the command line, in a Jupyter Notebook, and by using
the run_algorithm() function.

An algorithm requires an initialize() method that is called once when the simulation
starts. This method can be used to add properties to the context dictionary that is
available to all other algorithm methods or register pipelines that perform more complex
data processing, such as filtering securities based, for example, on the logic of alpha factors.

Algorithm execution occurs through optional methods that are either scheduled
automatically by zipline or at user-defined intervals. The
method before_trading_start() is called daily before the market opens and serves
primarily to identify a set of securities the algorithm may trade during the day. The
method handle_data() is called every minute.

The Pipeline API facilitates the definition and computation of alpha factors for a cross-
section of securities from historical data. A pipeline defines computations that produce
columns in a table with PIT values for a set of securities. It needs to be registered with the
initialize() method and can then be executed on an automatic or custom schedule. The
library provides numerous built-in computations such as moving averages or Bollinger
Bands that can be used to quickly compute standard factors but also allows for the creation
of custom factors as we will illustrate next.

Most importantly, the Pipeline API renders alpha factor research modular because it
separates the alpha factor computation from the remainder of the algorithm, including the
placement and execution of trade orders and the bookkeeping of portfolio holdings, values,
and so on.

Alpha Factor Research Chapter 4

[106]

A single alpha factor from market data
We are first going to illustrate the zipline alpha factor research workflow in an offline
environment. In particular, we will develop and test a simple mean-reversion factor that
measures how much recent performance has deviated from the historical average. Short-
term reversal is a common strategy that takes advantage of the weakly predictive pattern
that stock price increases are likely to mean-revert back down over horizons from less than
a minute to one month. See the Notebook single_factor_zipline.ipynby for details.

To this end, the factor computes the z-score for the last monthly return relative to the
rolling monthly returns over the last year. At this point, we will not place any orders to
simply illustrate the implementation of a CustomFactor and record the results during the
simulation.

After some basic settings, MeanReversion subclasses CustomFactor and defines
a compute() method. It creates default inputs of monthly returns over an also default year-
long window so that the monthly_return variable will have 252 rows and one column for
each security in the Quandl dataset on a given day.

The compute_factors() method creates a MeanReversion factor instance and creates
long, short, and ranking pipeline columns. The former two contain Boolean values that
could be used to place orders, and the latter reflects that overall ranking to evaluate the
overall factor performance. Furthermore, it uses the built-in AverageDollarVolume factor
to limit the computation to more liquid stocks:

from zipline.api import attach_pipeline, pipeline_output, record
from zipline.pipeline import Pipeline, CustomFactor
from zipline.pipeline.factors import Returns, AverageDollarVolume
from zipline import run_algorithm

MONTH, YEAR = 21, 252
N_LONGS = N_SHORTS = 25
VOL_SCREEN = 1000

class MeanReversion(CustomFactor):
 """Compute ratio of latest monthly return to 12m average,
 normalized by std dev of monthly returns"""
 inputs = [Returns(window_length=MONTH)]
 window_length = YEAR

 def compute(self, today, assets, out, monthly_returns):
 df = pd.DataFrame(monthly_returns)
 out[:] = df.iloc[-1].sub(df.mean()).div(df.std())

Alpha Factor Research Chapter 4

[107]

def compute_factors():
 """Create factor pipeline incl. mean reversion,
 filtered by 30d Dollar Volume; capture factor ranks"""
 mean_reversion = MeanReversion()
 dollar_volume = AverageDollarVolume(window_length=30)
 return Pipeline(columns={'longs' : mean_reversion.bottom(N_LONGS),
 'shorts' : mean_reversion.top(N_SHORTS),
 'ranking':
 mean_reversion.rank(ascending=False)},
 screen=dollar_volume.top(VOL_SCREEN))

The result would allow us to place long and short orders. We will see in the next chapter
how to build a portfolio by choosing a rebalancing period and adjusting portfolio holdings
as new signals arrive.

The initialize() method registers the compute_factors() pipeline, and the
before_trading_start() method ensures the pipeline runs on a daily basis. The
record() function adds the pipeline's ranking column as well as the current asset prices
to the performance DataFrame returned by the run_algorithm() function:

def initialize(context):
 """Setup: register pipeline, schedule rebalancing,
 and set trading params"""
 attach_pipeline(compute_factors(), 'factor_pipeline')

def before_trading_start(context, data):
 """Run factor pipeline"""
 context.factor_data = pipeline_output('factor_pipeline')
 record(factor_data=context.factor_data.ranking)
 assets = context.factor_data.index
 record(prices=data.current(assets, 'price'))

Finally, define the start and end Timestamp objects in UTC terms, set a capital base and
execute run_algorithm() with references to the key execution methods. The
performance DataFrame contains nested data, for example, the prices column consists of
a pd.Series for each cell. Hence, subsequent data access is easier when stored in the
pickle format:

start, end = pd.Timestamp('2015-01-01', tz='UTC'), pd.Timestamp('2018-
 01-01', tz='UTC')
capital_base = 1e7

performance = run_algorithm(start=start,
 end=end,
 initialize=initialize,
 before_trading_start=before_trading_start,

Alpha Factor Research Chapter 4

[108]

 capital_base=capital_base)

performance.to_pickle('single_factor.pickle')

We will use the factor and pricing data stored in the performance DataFrame to evaluate
the factor performance for various holding periods in the next section, but first, we'll take a
look at how to create more complex signals by combining several alpha factors from a
diverse set of data sources on the Quantopian platform.

Combining factors from diverse data sources
The Quantopian research environment is tailored to the rapid testing of predictive alpha
factors. The process is very similar because it builds on zipline, but offers much richer
access to data sources. The following code sample illustrates how to compute alpha factors
not only from market data as previously but also from fundamental and alternative data.
See the Notebook multiple_factors_quantopian_research.ipynb for details.

Quantopian provides several hundred MorningStar fundamental variables for free and also
includes stocktwits signals as an example of an alternative data source. There are also
custom universe definitions such as QTradableStocksUS that applies several filters to
limit the backtest universe to stocks that were likely tradeable under realistic market
conditions:

from quantopian.research import run_pipeline
from quantopian.pipeline import Pipeline
from quantopian.pipeline.data.builtin import USEquityPricing
from quantopian.pipeline.data.morningstar import income_statement,
 operation_ratios, balance_sheet
from quantopian.pipeline.data.psychsignal import stocktwits
from quantopian.pipeline.factors import CustomFactor,
 SimpleMovingAverage, Returns
from quantopian.pipeline.filters import QTradableStocksUS

We will use a custom AggregateFundamentals class to use the last reported fundamental
data point. This aims to address the fact that fundamentals are reported quarterly, and
Quantopian does not currently provide an easy way to aggregate historical data, say to
obtain the sum of the last four quarters, on a rolling basis:

class AggregateFundamentals(CustomFactor):
 def compute(self, today, assets, out, inputs):
 out[:] = inputs[0]

Alpha Factor Research Chapter 4

[109]

We will again use the custom MeanReversion factor from the preceding code. We will also
compute several other factors for the given universe definition using the rank()
method's mask parameter:

def compute_factors():
 universe = QTradableStocksUS()

 profitability = (AggregateFundamentals(inputs=
 [income_statement.gross_profit],
 window_length=YEAR) /
 balance_sheet.total_assets.latest).rank(mask=universe)

 roic = operation_ratios.roic.latest.rank(mask=universe)
 ebitda_yield = (AggregateFundamentals(inputs=
 [income_statement.ebitda],
 window_length=YEAR) /
 USEquityPricing.close.latest).rank(mask=universe)
 mean_reversion = MeanReversion().rank(mask=universe)
 price_momentum = Returns(window_length=QTR).rank(mask=universe)
 sentiment = SimpleMovingAverage(inputs=
 [stocktwits.bull_minus_bear],
 window_length=5).rank(mask=universe)

 factor = profitability + roic + ebitda_yield + mean_reversion +
 price_momentum + sentiment

 return Pipeline(
 columns={'Profitability' : profitability,
 'ROIC' : roic,
 'EBITDA Yield' : ebitda_yield,
 "Mean Reversion (1M)": mean_reversion,
 'Sentiment' : sentiment,
 "Price Momentum (3M)": price_momentum,
 'Alpha Factor' : factor})

This algorithm uses a naive method to combine the six individual factors by simply adding
the ranks of assets for each of these factors. Instead of equal weights, we would like to take
into account the relative importance and incremental information in predicting future
returns. The ML algorithms of the next chapters will allow us to do exactly this, using the
same backtesting framework.

Execution also relies on run_algorithm(), but the return DataFrame on the Quantopian
platform only contains the factor values created by the Pipeline. This is convenient
because this data format can be used as input for alphalens, the library for the evaluation
of the predictive performance of alpha factors.

Alpha Factor Research Chapter 4

[110]

Separating signal and noise – how to use
alphalens
Quantopian has open sourced the Python library, alphalens, for the performance analysis
of predictive stock factors that integrates well with the backtesting library zipline and the
portfolio performance and risk analysis library pyfolio that we will explore in the next
chapter.

alphalens facilitates the analysis of the predictive power of alpha factors concerning the:

Correlation of the signals with subsequent returns
Profitability of an equal or factor-weighted portfolio based on a (subset of) the
signals
Turnover of factors to indicate the potential trading costs
Factor-performance during specific events
Breakdowns of the preceding by sector

The analysis can be conducted using tearsheets or individual computations and plots. The
tearsheets are illustrated in the online repo to save some space.

Creating forward returns and factor quantiles
To utilize alphalens, we need to provide signals for a universe of assets like those
returned by the ranks of the MeanReversion factor, and the forward returns earned by
investing in an asset for a given holding period. See Notebook
03_performance_eval_alphalens.ipynb for details.

We will recover the prices from the single_factor.pickle file as follows
(factor_data accordingly):

performance = pd.read_pickle('single_factor.pickle')

prices = pd.concat([df.to_frame(d) for d, df in
performance.prices.items()],axis=1).T
prices.columns = [re.findall(r"\[(.+)\]", str(col))[0] for col in
 prices.columns]
prices.index = prices.index.normalize()
prices.info()

<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 755 entries, 2015-01-02 to 2017-12-29

Alpha Factor Research Chapter 4

[111]

Columns: 1661 entries, A to ZTS
dtypes: float64(1661)

The GitHub repository's alpha factor evaluation Notebook has more detail on how to
conduct the evaluation in a sector-specific way.

We can create the alphalens input data in the required format using
the get_clean_factor_and_forward_returns utility function that also returns the
signal quartiles and the forward returns for the given holding periods:

HOLDING_PERIODS = (5, 10, 21, 42)
QUANTILES = 5
alphalens_data = get_clean_factor_and_forward_returns(factor=factor_data,
 prices=prices,
 periods=HOLDING_PERIODS,
 quantiles=QUANTILES)

Dropped 14.5% entries from factor data: 14.5% in forward returns
computation and 0.0% in binning phase (set max_loss=0 to see potentially
suppressed Exceptions). max_loss is 35.0%, not exceeded: OK!

 The alphalens_data DataFrame contains the returns on an investment in the given asset
on a given date for the indicated holding period, as well as the factor value, that is, the
asset's MeanReversion ranking on that date, and the corresponding quantile value:

date asset 5D 10D 21D 42D factor factor_quantile
01/02/15 A 0.07% -5.70% -2.32% 4.09% 2618 4

AAL -3.51% -7.61% -11.89% -10.23% 1088 2
AAP 1.10% -5.40% -0.94% -3.81% 791 1
AAPL 2.45% -3.05% 8.52% 15.62% 2917 5
ABBV -0.17% -2.05% -6.43% -13.70% 2952 5

The forward returns and the signal quantiles are the basis for evaluating the predictive
power of the signal. Typically, a factor should deliver markedly different returns for
distinct quantiles, such as negative returns for the bottom quintile of the factor values and
positive returns for the top quantile.

Alpha Factor Research Chapter 4

[112]

Predictive performance by factor quantiles
As a first step, we would like to visualize the average period return by factor quantile. We
can use the built-in function mean_return_by_quantile from the performance
and plot_quantile_returns_bar from the plotting modules:

from alphalens.performance import mean_return_by_quantile
from alphalens.plotting import plot_quantile_returns_bar
mean_return_by_q, std_err = mean_return_by_quantile(alphalens_data)
plot_quantile_returns_bar(mean_return_by_q);

The result is a bar chart that breaks down the mean of the forward returns for the four
different holding periods based on the quintile of the factor signal. As you can see, the
bottom quintiles yielded markedly more negative results than the top quintiles, except for
the longest holding period:

The 10D holding period provides slightly better results for the first and fourth quartiles. We
would also like to see the performance over time of investments driven by each of the
signal quintiles. We will calculate daily, as opposed to average returns for the 5D holding
period, and alphalens will adjust the period returns to account for the mismatch between
daily signals and a longer holding period (for details, see docs):

from alphalens.plotting import plot_cumulative_returns_by_quantile
mean_return_by_q_daily, std_err =
 mean_return_by_quantile(alphalens_data, by_date=True)
plot_cumulative_returns_by_quantile(mean_return_by_q_daily['5D'],
 period='5D');

Alpha Factor Research Chapter 4

[113]

The resulting line plot shows that, for most of this three-year period, the top two quintiles
significantly outperformed the bottom two quintiles. However, as suggested by the
previous plot, signals by the fourth quintile produced a better performance than those by
the top quintile:

A factor that is useful for a trading strategy shows the preceding pattern where cumulative
returns develop along clearly distinct paths because this allows for a long-short strategy
with lower capital requirements and correspondingly lower exposure to the overall market.

However, we also need to take the dispersion of period returns into account rather than just
the averages. To this end, we can rely on the built-in plot_quantile_returns_violin:

from alphalens.plotting import plot_quantile_returns_violin
plot_quantile_returns_violin(mean_return_by_q_daily);

This distributional plot highlights that the range of daily returns is fairly wide and, despite
different means, the separation of the distributions is very limited so that, on any given
day, the differences in performance between the different quintiles may be rather limited:

Alpha Factor Research Chapter 4

[114]

While we focus on the evaluation of a single alpha factor, we are simplifying things by
ignoring practical issues related to trade execution that we will relax when we address
proper backtesting in the next chapter. Some of these include:

The transaction costs of trading
Slippage, the difference between the price at decision and trade execution, for
example, due to the market impact

The information coefficient
Most of this book is about the design of alpha factors using ML models. ML is about
optimizing some predictive objective, and in this section, we will introduce the key metrics
used to measure the performance of an alpha factor. We will define alpha as the average
return in excess of a benchmark.

This leads to the information ratio (IR) that measures the average excess return per unit of
risk taken by dividing alpha by the tracking risk. When the benchmark is the risk-free rate,
the IR corresponds to the well-known Sharpe ratio, and we will highlight crucial statistical
measurement issues that arise in the typical case when returns are not normally distributed.
We will also explain the fundamental law of active management that breaks the IR down
into a combination of forecasting skill and a strategy's ability to effectively leverage the
forecasting skills.

Alpha Factor Research Chapter 4

[115]

The goal of alpha factors is the accurate directional prediction of future returns. Hence, a
natural performance measure is the correlation between an alpha factor's predictions and
the forward returns of the target assets.

It is better to use the non-parametric Spearman rank correlation coefficient that measures
how well the relationship between two variables can be described using a monotonic
function, as opposed to the Pearson correlation that measures the strength of a linear
relationship.

We can obtain the information coefficient using alphalens, which relies
on scipy.stats.spearmanr under the hood (see the repo for an example on how to use
scipy directly to obtain p-values). The factor_information_coefficient function
computes the period-wise correlation and plot_ic_ts creates a time-series plot with one-
month moving average:

from alphalens.performance import factor_information_coefficient
from alphalens.plotting import plot_ic_ts
ic = factor_information_coefficient(alphalens_data)
plot_ic_ts(ic[['5D']])

This time series plot shows extended periods with significantly positive moving-average
IC. An IC of 0.05 or even 0.1 allows for significant outperformance if there are sufficient
opportunities to apply this forecasting skill, as the fundamental law of active management
will illustrate:

Alpha Factor Research Chapter 4

[116]

A plot of the annual mean IC highlights how the factor's performance was historically
uneven:

ic = factor_information_coefficient(alphalens_data)
ic_by_year = ic.resample('A').mean()
ic_by_year.index = ic_by_year.index.year
ic_by_year.plot.bar(figsize=(14, 6))

This produces the following chart:

An information coefficient below 0.05 as in this case, is low but significant and can produce
positive residual returns relative to a benchmark as we will see in the next section.
The create_summary_tear_sheet(alphalens_data) creates IC summary statistics,
where the risk-adjusted IC results from dividing the mean IC by the standard deviation of
the IC, which is also subjected to a two-sided t-test with the null hypothesis IC = 0
using scipy.stats.ttest_1samp:

5D 10D 21D 42D
IC Mean 0.01 0.02 0.01 0.00
IC Std. 0.14 0.13 0.12 0.12

Risk-Adjusted IC 0.10 0.13 0.10 0.01
t-stat(IC) 2.68 3.53 2.53 0.14

p-value(IC) 0.01 0.00 0.01 0.89
IC Skew 0.41 0.22 0.19 0.21

IC Kurtosis 0.18 -0.33 -0.42 -0.27

Alpha Factor Research Chapter 4

[117]

Factor turnover
Factor turnover measures how frequently the assets associated with a given quantile
change, that is, how many trades are required to adjust a portfolio to the sequence of
signals. More specifically, it measures the share of assets currently in a factor quantile that
was not in that quantile in the last period. The following table is produced by this
command:

create_turnover_tear_sheet(alphalens_data)

The share of assets that were to join a quintile-based portfolio is fairly high, suggesting that
the trading costs pose a challenge to reaping the benefits from the predictive performance:

Mean Turnover 5D 10D 21D 42D
Quantile 1 59% 83% 83% 41%
Quantile 2 74% 80% 81% 65%
Quantile 3 76% 80% 81% 68%
Quantile 4 74% 81% 81% 64%
Quantile 5 57% 81% 81% 39%

An alternative view on factor turnover is the correlation of the asset rank due to the factor
over various holding periods, also part of the tear sheet:

5D 10D 21D 42D
Mean Factor Rank Autocorrelation 0.711 0.452 -0.031 -0.013

Generally, more stability is preferable to keep trading costs manageable.

Alpha factor resources
The research process requires designing and selecting alpha factors with respect to the
predictive power of their signals. An algorithmic trading strategy will typically build on
multiple alpha factors that send signals for each asset. These factors may be aggregated
using an ML model to optimize how the various signals translate into decisions about the
timing and sizing of individual positions, as we will see in subsequent chapters.

Alpha Factor Research Chapter 4

[118]

Alternative algorithmic trading libraries
Additional open-source Python libraries for algorithmic trading and data collection include
(see links on GitHub):

QuantConnect is a competitor to Quantopian
WorldQuant offers online competition and recruits community contributors to a
crowd-sourced hedge fund
Alpha Trading Labs offers high-frequency focused testing infrastructure with a
business model similar to Quantopian
Python Algorithmic Trading Library (PyAlgoTrade) focuses on backtesting and
offers support for paper-trading and live-trading. It allows you to evaluate an
idea for a trading strategy with historical data and aims to do so with minimal
effort.
pybacktest is a vectorized backtesting framework that uses pandas and aims to
be compact, simple and fast (the project is currently on hold)
ultrafinance is an older project that combines real-time financial data collection,
analyzing and backtesting of trading strategies
Trading with Python offers courses and a collection of functions and classes for
Quantitative trading
Interactive Brokers offers a Python API for live trading on their platform

Summary
In this chapter, we covered the use of the zipline library for the event-driven simulation
of a trading algorithm, both offline and on the Quantopian online platform. We have
illustrated the design and evaluation of individual alpha factors to derive signals for an
algorithmic trading strategy from market, fundamental, and alternative data, and
demonstrated a naive way of combining multiple factors. We also introduced the
alphalens library that permits the comprehensive evaluation of the predictive
performance and trading turnover of signals.

The portfolio construction process, in turn, takes a broader perspective and aims at the
optimal sizing of positions from a risk and return perspective. We will now turn to various
strategies to balance risk and returns in a portfolio process. We will also look in more detail
at the challenges of backtesting trading strategies on a limited set of historical data and how
to address these challenges.

5
Strategy Evaluation

Alpha factors drive an algorithmic strategy that translates into trades that, in turn, produce
a portfolio. The returns and risk of the resulting portfolio determine the success of the
strategy. Testing a strategy requires simulating the portfolios generated by an algorithm to
verify its performance under market conditions. Strategy evaluation includes backtesting
against historical data to optimize the strategy's parameters, and forward-testing to validate
the in-sample performance against new, out-of-sample data and avoid false discoveries
from tailoring a strategy to specific past circumstances.

In a portfolio context, positive asset returns can offset negative price movements in a non-
linear way so that the overall variation of portfolio returns is less than the weighted
average of the variation of the portfolio positions unless their returns are perfectly and
positively correlated. Harry Markowitz developed the theory behind modern portfolio
management based on diversification in 1952, which gave rise to mean-variance
optimization: for a given set of assets, portfolio weights can be optimized to reduce risk,
measured as the standard deviation of returns for a given expected level of returns.

The capital asset pricing model (CAPM) introduced a risk premium as an equilibrium
reward for holding an asset that compensates for the exposure to a single risk factor—the
market—that cannot be diversified away. Risk management has evolved to become much
more sophisticated as additional risk factors and more granular choices for exposure have
emerged. The Kelly Rule is a popular approach to dynamic portfolio optimization, which is
the choice of a sequence of positions over time; it has been famously adapted from its
original application in gambling to the stock market by Edward Thorp in 1968.

As a result, there are several approaches to optimize portfolios that include the application
of machine learning (ML) to learn hierarchical relationships among assets and treat their
holdings as complements or substitutes with respect to the portfolio risk profile.

Strategy Evaluation Chapter 5

[120]

In this chapter, we will cover the following topics:

How to build and test a portfolio based on alpha factors using zipline
How to measure portfolio risk and return
How to evaluate portfolio performance using pyfolio
How to manage portfolio weights using mean-variance optimization and
alternatives
How to use machine learning to optimize asset allocation in a portfolio context

The code examples for this chapter are in the
05_strategy_evaluation_and_portfolio_management directory of the companion
GitHub repository.

How to build and test a portfolio with zipline
In the last chapter, we introduced zipline to simulate the computation of alpha factors
from trailing cross-sectional market, fundamental, and alternative data. Now we will
exploit the alpha factors to derive and act on buy and sell signals. We will postpone
optimizing the portfolio weights until later in this chapter, and for now, just assign
positions of equal value to each holding. The code for this section is in
the 01_trading_zipline subdirectory.

Scheduled trading and portfolio rebalancing
We will use the custom MeanReversion factor developed in the last chapter—see the
implementation in alpha_factor_zipline_with_trades.py.

The Pipeline created by the compute_factors() method returns a table with a long and
a short column for the 25 stocks with the largest negative and positive deviations of their
last monthly return from its annual average, normalized by the standard deviation. It also
limited the universe to the 500 stocks with the highest average trading volume over the last
30 trading days. before_trading_start() ensures the daily execution of the
pipeline and the recording of the results, including the current prices.

Strategy Evaluation Chapter 5

[121]

The new rebalance() method submits trade orders to the exec_trades() method for
the assets flagged for long and short positions by the pipeline with equal positive and
negative weights. It also divests any current holdings that are no longer included in the
factor signals:

def exec_trades(data, assets, target_percent):
 """Place orders for assets using target portfolio percentage"""
 for asset in assets:
 if data.can_trade(asset) and not get_open_orders(asset):
 order_target_percent(asset, target_percent)

def rebalance(context, data):
 """Compute long, short and obsolete holdings; place trade orders"""
 factor_data = context.factor_data
 assets = factor_data.index

 longs = assets[factor_data.longs]
 shorts = assets[factor_data.shorts]
 divest = context.portfolio.positions.keys() - longs.union(shorts)

 exec_trades(data, assets=divest, target_percent=0)
 exec_trades(data, assets=longs, target_percent=1 / N_LONGS)
 exec_trades(data, assets=shorts, target_percent=-1 / N_SHORTS)

The rebalance() method runs according to date_rules and time_rules set by the
schedule_function() utility at the beginning of the week, right after market_open as
stipulated by the built-in US_EQUITIES calendar (see docs for details on rules). You can
also specify a trade commission both in relative terms and as a minimum amount. There is
also an option to define slippage, which is the cost of an adverse change in price between
trade decision and execution:

def initialize(context):
 """Setup: register pipeline, schedule rebalancing,
 and set trading params"""
 attach_pipeline(compute_factors(), 'factor_pipeline')
 schedule_function(rebalance,
 date_rules.week_start(),
 time_rules.market_open(),
 calendar=calendars.US_EQUITIES)

 set_commission(us_equities=commission.PerShare(cost=0.00075,
min_trade_cost=.01))
set_slippage(us_equities=slippage.VolumeShareSlippage(volume_limit=0.0025,
price_impact=0.01))

Strategy Evaluation Chapter 5

[122]

The algorithm continues to execute after calling the run_algorithm() function and
returns the same backtest performance DataFrame. We will now turn to common measures
of portfolio return and risk, and how to compute them using the pyfolio library.

How to measure performance with pyfolio
ML is about optimizing objective functions. In algorithmic trading, the objectives are the
return and the risk of the overall investment portfolio, typically relative to a benchmark
(which may be cash or the risk-free interest rate).

There are several metrics to evaluate these objectives. We will briefly review the most
commonly-used metrics and how to compute them using the pyfolio library, which
is also used by zipline and Quantopian. We will also review how to apply these metrics
on Quantopian when testing an algorithmic trading strategy.

We'll use some simple notations: let R be the time series of one-period simple portfolio
returns, R=(r1, ..., rT), from dates 1 to T, and Rf =(rf

1, ..., r
f
T) be the matching time series of risk-

free rates, so that Re=R-Rf =(r1-r
f
1,..., rT-r

f
T) is the excess return.

The Sharpe ratio
The ex-ante Sharpe ratio (SR) compares the portfolio's expected excess portfolio to the
volatility of this excess return, measured by its standard deviation. It measures the
compensation as the average excess return per unit of risk taken:

Strategy Evaluation Chapter 5

[123]

Expected returns and volatilities are not observable, but can be estimated as follows using
historical data:

Unless the risk-free rate is volatile (as in emerging markets), the standard deviation of
excess and raw returns will be similar. When the SR is used with a benchmark other than
the risk-free rate, for example, the S&P 500, it is called the information ratio. In this case, it
measures the excess return of the portfolio, also called alpha, relative to the tracking error,
which is the deviation of the portfolio returns from the benchmark returns.

For independently and identically-distributed (iid) returns, the derivation of the
distribution of the estimator of the SR for tests of statistical significance follows from the
application of the Central Limit Theorem, according to large-sample statistical theory, to μ̂
and σ̂2.

However, financial returns often violate the iid assumptions. Andrew Lo has derived the
necessary adjustments to the distribution and the time aggregation for returns that are
stationary but autocorrelated returns. This is important because the time-series properties
of investment strategies (for example, mean reversion, momentum, and other forms of
serial correlation) can have a non-trivial impact on the SR estimator itself, especially when
annualizing the SR from higher-frequency data (Lo 2002).

The fundamental law of active management
A high Information Ratio (IR) implies attractive out-performance relative to the additional
risk taken. The Fundamental Law of Active Management breaks the IR down into the
information coefficient (IC) as a measure of forecasting skill, and the ability to apply this
skill through independent bets. It summarizes the importance to play both often (high
breadth) and to play well (high IC):

Strategy Evaluation Chapter 5

[124]

The IC measures the correlation between an alpha factor and the forward returns resulting
from its signals and captures the accuracy of a manager's forecasting skills. The breadth of
the strategy is measured by the independent number of bets an investor makes in a given
time period, and the product of both values is proportional to the IR, also known as
appraisal risk (Treynor and Black).

This framework has been extended to include the transfer coefficient (TC) to reflect
portfolio constraints (for example, on short-selling) that may limit the information ratio
below a level otherwise achievable given IC or strategy breadth. The TC proxies the
efficiency with which the manager translates insights into portfolio bets (Clarke et al. 2002).

The fundamental law is important because it highlights the key drivers of outperformance:
both accurate predictions and the ability to make independent forecasts and act on these
forecasts matter. In practice, managers with a broad set of investment decisions can achieve
significant risk-adjusted excess returns with information coefficients between 0.05 and 0.15
(if there is space possibly include simulation chart).

In practice, estimating the breadth of a strategy is difficult given the cross-sectional and
time-series correlation among forecasts.

In and out-of-sample performance with pyfolio
Pyfolio facilitates the analysis of portfolio performance and risk in-sample and out-of-
sample using many standard metrics. It produces tear sheets covering the analysis of
returns, positions, and transactions, as well as event risk during periods of market stress
using several built-in scenarios, and also includes Bayesian out-of-sample performance
analysis.

It relies on portfolio returns and position data, and can also take into account the
transaction costs and slippage losses of trading activity. The metrics are computed using
the empyrical library that can also be used on a standalone basis.

The performance DataFrame produced by the zipline backtesting engine can be
translated into the requisite pyfolio input.

Strategy Evaluation Chapter 5

[125]

Getting pyfolio input from alphalens
However, pyfolio also integrates with alphalens directly and permits the creation
of pyfolio input data using create_pyfolio_input:

from alphalens.performance import create_pyfolio_input

qmin, qmax = factor_data.factor_quantile.min(),
 factor_data.factor_quantile.max()
input_data = create_pyfolio_input(alphalens_data,
 period='1D',
 capital=100000,
 long_short=False,
 equal_weight=False,
 quantiles=[1, 5],
 benchmark_period='1D')
returns, positions, benchmark = input_data

There are two options to specify how portfolio weights will be generated:

long_short: If False, weights will correspond to factor values divided by their
absolute value so that negative factor values generate short positions. If True,
factor values are first demeaned so that long and short positions cancel each
other out and the portfolio is market neutral.
equal_weight: If True, and long_short is True, assets will be split into two
equal-sized groups with the top/bottom half making up long/short positions.

Long-short portfolios can also be created for groups if factor_data includes, for example,
sector info for each asset.

Getting pyfolio input from a zipline backtest
The result of a zipline backtest can be converted into the required pyfolio input using
extract_rets_pos_txn_from_zipline:

returns, positions, transactions =
 extract_rets_pos_txn_from_zipline(backtest)

Strategy Evaluation Chapter 5

[126]

Walk-forward testing out-of-sample returns
Testing a trading strategy involves backtesting against historical data to fine-tune alpha
factor parameters, as well as forward-testing against new market data to validate that the
strategy performs well out of sample or if the parameters are too closely tailored to specific
historical circumstances.

Pyfolio allows for the designation of an out-of-sample period to simulate walk-forward
testing. There are numerous aspects to take into account when testing a strategy to
obtain statistically reliable results, which we will address here.

The plot_rolling_returns function displays cumulative in and out-of-sample returns
against a user-defined benchmark (we are using the S&P 500):

from pyfolio.plotting import plot_rolling_returns
plot_rolling_returns(returns=returns,
 factor_returns=benchmark_rets,
 live_start_date='2017-01-01',
 cone_std=(1.0, 1.5, 2.0))

The plot includes a cone that shows expanding confidence intervals to indicate when out-
of-sample returns appear unlikely given random-walk assumptions. Here, our strategy did
not perform well against the benchmark during the simulated 2017 out-of-sample period:

Strategy Evaluation Chapter 5

[127]

Summary performance statistics
pyfolio offers several analytic functions and plots. The perf_stats summary displays
the annual and cumulative returns, volatility, skew, and kurtosis of returns and the SR. The
following additional metrics (which can also be calculated individually) are most
important:

Max drawdown: Highest percentage loss from the previous peak
Calmar ratio: Annual portfolio return relative to maximal drawdown
Omega ratio: The probability-weighted ratio of gains versus losses for a return
target, zero per default
Sortino ratio: Excess return relative to downside standard deviation
Tail ratio: Size of the right tail (gains, the absolute value of the 95th percentile)
relative to the size of the left tail (losses, abs. value of the 5th percentile)
Daily value at risk (VaR): Loss corresponding to a return two standard
deviations below the daily mean
Alpha: Portfolio return unexplained by the benchmark return
Beta: Exposure to the benchmark

from pyfolio.timeseries import perf_stats
perf_stats(returns=returns,
 factor_returns=benchmark_rets,
 positions=positions,
 transactions=transactions)

For the simulated long-short portfolio derived from the MeanReversion factor, we obtain
the following performance statistics:

Metric All In-sample Out-of-sample Metric All In-sample Out-of-sample
Annual return 1.80% 0.60% 4.20% Skew 0.34 0.40 0.09
Cumulative returns 5.40% 1.10% 4.20% Kurtosis 3.70 3.37 2.59
Annual volatility 5.80% 6.30% 4.60% Tail ratio 0.91 0.88 1.03
Sharpe ratio 0.33 0.12 0.92 Daily value at risk -0.7% -0.8% -0.6%
Calmar ratio 0.17 0.06 1.28 Gross leverage 0.38 0.37 0.42
Stability 0.49 0.04 0.75 Daily turnover 4.70% 4.40% 5.10%
Max drawdown -10.10% -10.10% -3.30% Alpha 0.01 0.00 0.04
Omega ratio 1.06 1.02 1.18 Beta 0.15 0.16 0.03
Sortino Ratio 0.48 0.18 1.37

See the appendix for details on the calculation and interpretation of portfolio risk and
return metrics.

Strategy Evaluation Chapter 5

[128]

Drawdown periods and factor exposure
The plot_drawdown_periods(returns) function plots the principal drawdown periods
for the portfolio, and several other plotting functions show the rolling SR and rolling factor
exposures to the market beta or the Fama French size, growth, and momentum factors:

fig, ax = plt.subplots(nrows=2, ncols=2, figsize=(16, 10))
axes = ax.flatten()

plot_drawdown_periods(returns=returns, ax=axes[0])
plot_rolling_beta(returns=returns, factor_returns=benchmark_rets,
 ax=axes[1])
plot_drawdown_underwater(returns=returns, ax=axes[2])
plot_rolling_sharpe(returns=returns)

This plot, which highlights a subset of the visualization contained in the various tear sheets,
illustrates how pyfolio allows us to drill down into the performance characteristics and
exposure to fundamental drivers of risk and returns:

Strategy Evaluation Chapter 5

[129]

Modeling event risk
Pyfolio also includes timelines for various events that you can use to compare the
performance of a portfolio to a benchmark during this period, for example, during the fall
2015 selloff following the Brexit vote:

interesting_times = extract_interesting_date_ranges(returns=returns)
interesting_times['Fall2015'].to_frame('pf') \
 .join(benchmark_rets) \
 .add(1).cumprod().sub(1) \
 .plot(lw=2, figsize=(14, 6), title='Post-Brexit Turmoil')

The resulting plot looks as follows:

How to avoid the pitfalls of backtesting
Backtesting simulates an algorithmic strategy using historical data with the goal of
identifying patterns that generalize to new market conditions. In addition to the generic
challenges of predicting an uncertain future in changing markets, numerous factors make
mistaking positive in-sample performance for the discovery of true patterns very likely.
These factors include aspects of the data, the implementation of the strategy simulation,
and flaws with the statistical tests and their interpretation. The risks of false discoveries
multiply with the use of more computing power, bigger datasets, and more complex
algorithms that facilitate the identification of apparent patterns in the noise.

Strategy Evaluation Chapter 5

[130]

We will list the most serious and common methodological mistakes and refer to the
literature on multiple testing for further detail. We will also introduce the deflated SR that
illustrates how to adjust metrics that result from repeated trials when using the same set of
financial data for your analysis.

Data challenges
Challenges to the backtest validity due to data issues include look-ahead bias, survivorship
bias, and outlier control.

Look-ahead bias
Tests of trading rules derived from past data will yield biased results when the sample data
used to develop the rules contains information that was not, in fact, available or known at
the point in time the data refers to.

A typical source of this bias is the failure to account for the common ex-post corrections of
reported financials. Stock splits or reverse splits can also generate look-ahead bias. When
computing the earnings yield, earnings-per-share data comes from company financials with
low frequency, while market prices are available at least daily. Hence, both EPS and price
data need to be adjusted for splits at the same time.

The solution lies in the careful analysis of the timestamps associated with all data that
enters a backtest to ensure that only point-in-time data is used. High-quality data
providers, such as Compustat, ensure that these criteria are met. When point-in-time data is
not available, assumptions about the lag in reporting needs to be made.

Survivorship bias
Survivorship bias emerges when a backtest is conducted on data that only contains
currently active securities and omits assets that have disappeared over time, for example,
due to bankruptcy, delisting, or acquisition. Securities that are no longer part of the
investment universe often did not perform well, and including these cases
can positively skew the backtest result.

The solution, naturally, is to verify that datasets include all securities available over time as
opposed to only those that are still available when running the test.

Strategy Evaluation Chapter 5

[131]

Outlier control
Data preparation before analysis typically includes treatment of outliers, example, by
winsorizing, or clipping, extreme values. The challenge is to identify outliers that are truly
not representative of the period under analysis, as opposed to extreme values that are an
integral part of the market environment at that time. Many market models assume
normally-distributed data when extreme values are observed more frequently, as suggested
by fat-tailed distributions.

The solution involves careful analysis of outliers with respect to the probability of extreme
values occurring and adjusting the strategy parameters to this reality.

Unrepresentative period
A backtest will not yield a representative result that generalizes to future periods if the time
period used does not reflect the current environment well, lacks relevant market regime
aspects, and does not include enough data points or captures extreme historical events that
are unlikely to repeat.

The solution involves using sample periods that include important market phenomena, or
generate synthetic data that reflect relevant market characteristics (see the Resources section
for guidance on implementation).

Implementation issues
Practical issues related to the implementation of the historical simulation include failure to
mark to market, i.e. accurately reflect underlying market prices and account for
drawdowns, unrealistic assumptions about the availability, cost, or market impact of
trades, or the timing of signals and trade execution.

Mark-to-market performance
This strategy may perform well over the course of the backtest but lead to unacceptable
losses or volatility over time.

The solution involves plotting performance over time or calculating (rolling) risk metrics,
such as value at risk (VaR) or the Sortino Ratio (see appendix for details).

Strategy Evaluation Chapter 5

[132]

Trading costs
This strategy may assume short sales that require a counter-party, hold less liquid assets
that may move the market when traded or underestimate the costs that arise due to broker
fees or slippage, which is the difference between the market price at the decision to trade
and subsequent execution.

The solution includes a limitation to a highly liquid universe and realistic parameter
assumptions for trading and slippage costs (as illustrated in the preceding zipline
example). This also safeguards against the inclusion of unstable factor signals with a high
decay and, hence, turnover.

Timing of trades
The simulation could make unrealistic assumptions about the timing of the evaluation of
the alpha factor signals and the resulting trades. For instance, signals may be evaluated at
close prices when the next trade is only available at the often-quite-different open prices. As
a consequence, the backtest will be significantly biased when the close price is used to
evaluate trading performance.

The solution involves careful orchestration of the sequence of signal arrival, trade
execution, and performance evaluation.

Data-snooping and backtest-overfitting
The most prominent challenge to backtest validity, including to published results, relates to
the discovery of spurious patterns due to multiple testing during the strategy-selection
process. Selecting a strategy after testing different candidates on the same data will likely
bias the choice because a positive outcome is more likely to be due to the stochastic nature
of the performance measure itself. In other words, the strategy is overly tailored, or overfit,
to the data at hand and produces deceptively positive results.

Hence, backtest performance is not informative unless the number of trials is reported to
allow for an assessment of the risk of selection bias. This is rarely the case in practical or
academic research, inviting doubts about the validity of many published claims.

The risk of overfitting a backtest to a particular dataset does not only arise from directly
running numerous tests but includes strategies designed based on prior knowledge of what
works and doesn't, that is, knowledge of different backtests run by others on the same data.
As a result, backtest-overfitting is hard to avoid in practice.

Strategy Evaluation Chapter 5

[133]

Solutions include selecting tests to undertake based on investment or economic theory
rather than broad data-mining efforts. It also implies testing in a variety of contexts and
scenarios, including possibly on synthetic data.

The minimum backtest length and the deflated SR
Marcos Lopez de Prado (http:/ / www. quantresearch. info/) has published extensively on
the risks of backtesting, and how to detect or avoid it. This includes an online simulator of
backtest-overfitting (http:/ / datagrid. lbl. gov/ backtest/).

Another result includes an estimate of the minimum length of the backtest that an investor
should require given the number of trials attempted, to avoid selecting a strategy with a
given in-sample SR during a given number of trials that has an expected out-of-sample SR
of zero. This implies that, e.g., if only two years of daily backtest data is available no more
than seven strategy variations should be tried, and if only five years of daily backtest data
is available, no more than 45 strategy variations should be tried. See references for
implementation details.

De Lopez Prado and Bailey (2014) also derive a deflated SR to compute the probability that
the SR is statistically significant while controlling for the inflationary effect of multiple
testing, non-normal returns, and shorter sample lengths (see
the 03_multiple_testing subdirectory for the Python implementation of
deflated_sharpe_ratio.py and references for the derivation of the related formulas).

Optimal stopping for backtests
In addition to limiting backtests to strategies that can be justified on theoretical grounds as
opposed to as mere data-mining exercises, an important question is when to stop running
additional tests.

Based on the solution to the secretary problem from optimal stopping theory, the
recommendation is to decide according to the following rule of thumb: test a random
sample of 1/e (roughly 37%) of reasonable strategies and record their performance. Then,
continue tests until a strategy outperforms those tested before.

This rule applies to tests of several alternatives with the goal to choose a near-best as soon
as possible while minimizing the risk of a false positive.

http://www.quantresearch.info/
http://www.quantresearch.info/
http://www.quantresearch.info/
http://www.quantresearch.info/
http://www.quantresearch.info/
http://www.quantresearch.info/
http://www.quantresearch.info/
http://www.quantresearch.info/
http://www.quantresearch.info/
http://www.quantresearch.info/
http://datagrid.lbl.gov/backtest/
http://datagrid.lbl.gov/backtest/
http://datagrid.lbl.gov/backtest/
http://datagrid.lbl.gov/backtest/
http://datagrid.lbl.gov/backtest/
http://datagrid.lbl.gov/backtest/
http://datagrid.lbl.gov/backtest/
http://datagrid.lbl.gov/backtest/
http://datagrid.lbl.gov/backtest/
http://datagrid.lbl.gov/backtest/
http://datagrid.lbl.gov/backtest/
http://datagrid.lbl.gov/backtest/

Strategy Evaluation Chapter 5

[134]

How to manage portfolio risk and return
Portfolio management aims to take positions in financial instruments that achieve the
desired risk-return trade-off regarding a benchmark. In each period, a manager selects
positions that optimize diversification to reduce risks while achieving a target return.
Across periods, the positions will be rebalanced to account for changes in weights resulting
from price movements to achieve or maintain a target risk profile.

Diversification permits us to reduce risks for a given expected return by exploiting how
price movements interact with each other as one asset's gains can make up for another
asset's losses. Harry Markowitz invented Modern Portfolio Theory (MPT) in 1952 and
provided the mathematical tools to optimize diversification by choosing appropriate
portfolio weights. Markowitz showed how portfolio risk, measured as the standard
deviation of portfolio returns, depends on the covariance among the returns of all assets
and their relative weights. This relationship implies the existence of an efficient frontier of
portfolios that maximize portfolio returns given a maximal level of portfolio risk.

However, mean-variance frontiers are highly sensitive to the estimates of the input
required for their calculation, such as expected returns, volatilities, and correlations. In
practice, mean-variance portfolios that constrain these input to reduce sampling errors have
performed much better. These constrained special cases include equal-weighted, minimum-
variance, and risk-parity portfolios.

The Capital Asset Pricing Model (CAPM) is an asset valuation model that builds on the
MPT risk-return relationship. It introduces the concept of a risk premium that an investor
can expect in market equilibrium for holding a risky asset; the premium compensates
for the time value of money and the exposure to overall market risk that cannot be
eliminated through diversification (as opposed to the idiosyncratic risk of specific assets).
The economic rationale for non-diversifiable risk is, for example, macro drivers of the
business risks affecting equity returns or bond defaults. Hence, an asset's expected return,
E[ri], is the sum of the risk-free interest rate, rf, and a risk premium proportional to the
asset's exposure to the expected excess return of the market portfolio, rm, over the risk-free
rate:

Strategy Evaluation Chapter 5

[135]

In theory, the market portfolio contains all investable assets and will be held by all rational
investors in equilibrium. In practice, a broad value-weighted index approximates the
market, for example, the S&P 500 for US equity investments. βi measures the exposure to
the excess returns of the market portfolio. If the CAPM is valid, the intercept component, αi,
should be zero. In reality, the CAPM assumptions are often not met, and alpha captures the
returns left unexplained by exposure to the broad market.

Over time, research uncovered non-traditional sources of risk premiums, such as the
momentum or the equity value effects that explained some of the original alpha. Economic
rationales, such as behavioral biases of under or overreaction by investors to new
information justify risk premiums for exposure to these alternative risk factors. They
evolved into investment styles designed to capture these alternative betas that also became
tradable in the form of specialized index funds. After isolating contributions from these
alternative risk premiums, true alpha becomes limited to idiosyncratic asset returns and the
manager's ability to time risk exposures.

The EMH has been refined over the past several decades to rectify many of the original
shortcomings of the CAPM, including imperfect information and the costs associated with
transactions, financing, and agency. Many behavioral biases have the same effect, and some
frictions are modeled as behavioral biases.

ML plays an important role in deriving new alpha factors using supervised and
unsupervised learning techniques based on the market, fundamental, and alternative data
sources discussed in the previous chapters. The inputs to a machine learning model consist
of both raw data and features engineered to capture informative signals. ML models are
also used to combine individual predictive signals and deliver higher-aggregate predictive
power.

Modern portfolio theory and practice have evolved significantly over the last several
decades. We will introduce:

Mean-variance optimization, and its shortcomings
Alternatives such as minimum-risk and 1/n allocation
Risk parity approaches
Risk factor approaches

Mean-variance optimization
MPT solves for the optimal portfolio weights to minimize volatility for a given expected
return, or maximize returns for a given level of volatility. The key requisite input are
expected asset returns, standard deviations, and the covariance matrix.

Strategy Evaluation Chapter 5

[136]

How it works
Diversification works because the variance of portfolio returns depends on the covariance
of the assets and can be reduced below the weighted average of the asset variances by
including assets with less than perfect correlation. In particular, given a vector, ω, of
portfolio weights and the covariance matrix, Σ, the portfolio variance, σPF, is defined as:

Markowitz showed that the problem of maximizing the expected portfolio return subject to
a target risk has an equivalent dual representation of minimizing portfolio risk subject to a
target expected return level, μPF. Hence, the optimization problem becomes:

The efficient frontier in Python
We can calculate an efficient frontier using scipy.optimize.minimize and the historical
estimates for asset returns, standard deviations, and the covariance matrix. The code can be
found in the efficient_frontier subfolder of the repo for this chapter and implements
the following sequence of steps:

The simulation generates random weights using the Dirichlet distribution, and1.
computes the mean, standard deviation, and SR for each sample portfolio using
the historical return data:

def simulate_portfolios(mean_ret, cov, rf_rate=rf_rate,
short=True):
 alpha = np.full(shape=n_assets, fill_value=.01)
 weights = dirichlet(alpha=alpha, size=NUM_PF)
 weights *= choice([-1, 1], size=weights.shape)

 returns = weights @ mean_ret.values + 1
 returns = returns ** periods_per_year - 1
 std = (weights @ monthly_returns.T).std(1)
 std *= np.sqrt(periods_per_year)
 sharpe = (returns - rf_rate) / std

 return pd.DataFrame({'Annualized Standard Deviation': std,

Strategy Evaluation Chapter 5

[137]

 'Annualized Returns': returns,
 'Sharpe Ratio': sharpe}), weights

Set up the quadratic optimization problem to solve for the minimum standard2.
deviation for a given return or the maximum SR. To this end, define the functions
that measure the key metrics:

def portfolio_std(wt, rt=None, cov=None):
 """Annualized PF standard deviation"""
 return np.sqrt(wt @ cov @ wt * periods_per_year)

def portfolio_returns(wt, rt=None, cov=None):
 """Annualized PF returns"""
 return (wt @ rt + 1) ** periods_per_year - 1

def portfolio_performance(wt, rt, cov):
 """Annualized PF returns & standard deviation"""
 r = portfolio_returns(wt, rt=rt)
 sd = portfolio_std(wt, cov=cov)
 return r, sd

Define a target function that represents the negative SR3.
for scipy's minimize function to optimize given the constraints that the weights
are bounded by, [-1, 1], and sum to one in absolute terms:

def neg_sharpe_ratio(weights, mean_ret, cov):
 r, sd = portfolio_performance(weights, mean_ret, cov)
 return -(r - rf_rate) / sd

weight_constraint = {'type': 'eq',
 'fun': lambda x: np.sum(np.abs(x)) - 1}

def max_sharpe_ratio(mean_ret, cov, short=True):
 return minimize(fun=neg_sharpe_ratio,
 x0=x0,
 args=(mean_ret, cov),
 method='SLSQP',
 bounds=((-1 if short else 0, 1),) * n_assets,
 constraints=weight_constraint,
 options={'tol':1e-10, 'maxiter':1e4})

Compute the efficient frontier by iterating over a range of target returns and4.
solving for the corresponding minimum variance portfolios. The optimization
problem and the constraints on portfolio risk and return as a function of the
weights can be formulated as follows:

def neg_sharpe_ratio(weights, mean_ret, cov):

Strategy Evaluation Chapter 5

[138]

 r, sd = pf_performance(weights, mean_ret, cov)
 return -(r - RF_RATE) / sd

def pf_volatility(w, r, c):
 return pf_performance(w, r, c)[1]

def efficient_return(mean_ret, cov, target):
 args = (mean_ret, cov)
 def ret_(weights):
 return pf_ret(weights, mean_ret)

 constraints = [{'type': 'eq', 'fun': lambda x: ret_(x) -
 target},
 {'type': 'eq', 'fun': lambda x: np.sum(x) - 1}]
 bounds = ((0.0, 1.0),) * n_assets
 return minimize(pf_volatility,
 x0=x0,
 args=args, method='SLSQP',
 bounds=bounds,
 constraints=constraints)

The solution requires iterating over ranges of acceptable values to identify5.
optimal risk-return combinations:

def min_vol_target(mean_ret, cov, target, short=True):

 def ret_(wt):
 return portfolio_returns(wt, mean_ret)

 constraints = [{'type': 'eq', 'fun': lambda x: ret_(x) -
target},
 weight_constraint]

 bounds = ((-1 if short else 0, 1),) * n_assets
 return minimize(portfolio_std, x0=x0, args=(mean_ret, cov),
 method='SLSQP', bounds=bounds,
 constraints=constraints,
 options={'tol': 1e-10, 'maxiter': 1e4})

def efficient_frontier(mean_ret, cov, ret_range):
 return [min_vol_target(mean_ret, cov, ret) for ret in
ret_range]

Strategy Evaluation Chapter 5

[139]

The simulation yields a subset of the feasible portfolios, and the efficient frontier identifies
the optimal in-sample return-risk combinations that were achievable given historic
data. The below figure shows the result including the minimum variance portfolio and the
portfolio that maximizes the SR and several portfolios produce by alternative optimization
strategies that we discuss in the following sections.

The portfolio optimization can be run at every evaluation step of the trading strategy to
optimize the positions.

Challenges and shortcomings
The preceding mean-variance frontier example illustrates the in-sample, backward-looking
optimization. In practice, portfolio optimization requires forward-looking input. Expected
returns are notoriously difficult to estimate accurately.

Strategy Evaluation Chapter 5

[140]

The covariance matrix can be estimated somewhat more reliably, which has given rise to
several alternative approaches. However, covariance matrices with correlated assets pose
computational challenges since the optimization problem requires inverting the matrix. The
high condition number induces numerical instability, which in turn gives rise to Markovitz
curse: the more diversification is required (by correlated investment opportunities), the
more unreliable the weights produced by the algorithm.

Many investors prefer to use portfolio-optimization techniques with less onerous input
requirements. We now introduce several alternatives that aim to address these
shortcomings, including more recent approaches based on machine learning.

Alternatives to mean-variance optimization
The challenges with accurate input for the mean-variance optimization problem have led to
the adoption of several practical alternatives that constrain the mean, the variance, or both,
or omit return estimates that are more challenging, such as the risk parity approach.

The 1/n portfolio
Simple portfolios provide useful benchmarks to gauge the added value of complex models
that generate the risk of overfitting. The simplest strategy—an equally-weighted
portfolio—has been shown to be one of the best performers.

Famously, de Miguel, Garlappi, and Uppal (2009) compared the out-of-sample performance
of portfolios produced by various mean-variance optimizers, including robust Bayesian
estimators, portfolio constraints, and optimal combinations of portfolios, to the simple 1/N
rule. They found that the 1/N portfolio produced a higher Sharpe ratio than each asset class
position, explained by the high cost of estimation errors that often outweighs the benefits of
sophisticated optimization out-of-sample.

The 1/n portfolio is also included in the efficient frontier figure above.

Strategy Evaluation Chapter 5

[141]

The minimum-variance portfolio
Another alternative is the global minimum variance (GMV) portfolio, which prioritizes the
minimization of risk. It is shown in the efficient frontier figure and can be calculated as
follows by minimizing the portfolio standard deviation using the mean-variance
framework:

def min_vol(mean_ret, cov, short=True):
 return minimize(fun=portfolio_std,
 x0=x0,
 args=(mean_ret, cov),
 method='SLSQP',
 bounds=bounds = ((-1 if short else 0, 1),) *
 n_assets,
 constraints=weight_constraint,
 options={'tol': 1e-10, 'maxiter': 1e4})

The corresponding min. volatility portfolio lies on the efficient frontier as shown above.

Global Portfolio Optimization - The Black-Litterman
approach
 The Global Portfolio Optimization approach of Black and Litterman (1992) combines
economic models with statistical learning and is popular because it generates estimates of
expected returns that are plausible in many situations.

The technique departs from the assumption that the market is a mean-variance portfolio
implied by the CAPM equilibrium model, and builds on the fact that the observed market
capitalization can be considered as optimal weights assigned by the market. Market
weights reflect market prices that, in turn, embody the market’s expectations of future
returns.

Hence, the approach can reverse-engineer the unobservable future expected returns from
the assumption that the market is close enough to equilibrium, as defined by the CAPM,
and allow investors to adjust these estimates to their own beliefs using a shrinkage
estimator. The model can be interpreted as a Bayesian approach to portfolio optimization.
We will introduce Bayesian methods in Chapter 9, Bayesian Machine Learning.

Strategy Evaluation Chapter 5

[142]

How to size your bets – the Kelly rule
The Kelly rule has a long history in gambling because it provides guidance on how much to
stake on each of an (infinite) sequence of bets with varying (but favorable) odds to
maximize terminal wealth. It was published as A New Interpretation of the Information
Rate in 1956 by John Kelly who was a colleague of Claude Shannon's at Bell Labs. He was
intrigued by bets placed on candidates at the new quiz show The $64,000 Question, where a
viewer on the west coast used the three-hour delay to obtain insider information about the
winners.

Kelly drew a connection to Shannon's information theory to solve for the bet that is optimal
for long-term capital growth when the odds are favorable, but uncertainty remains. His
rule maximizes logarithmic wealth as a function of the odds of success of each game, and
includes implicit bankruptcy protection since log(0) is negative infinity so that a Kelly
gambler would naturally avoid losing everything.

The optimal size of a bet
Kelly began by analyzing games with a binary win-lose outcome. The key variables are:

b: The odds define the amount won for a $1 bet. Odds = 5/1 implies a $5 gain if
the bet wins, plus recovery of the $1 capital.
p: The probability defines the likelihood of a favorable outcome.
f: The share of the current capital to bet.
V: The value of the capital as a result of betting.

The Kelly rule aims to maximize the value's growth rate, G, of infinitely-repeated bets:

When W and L are the numbers of wins and losses, then:

Strategy Evaluation Chapter 5

[143]

We can maximize the rate of growth G by maximizing G with respect to f, as illustrated
using sympy as follows:

from sympy import symbols, solve, log, diff

share, odds, probability = symbols('share odds probability')
Value = probability * log(1 + odds * share) + (1 - probability) * log(1
 - share)
solve(diff(Value, share), share)

[(odds*probability + probability - 1)/odds]

We arrive at the optimal share of capital to bet:

Optimal investment – single asset
In a financial market context, both outcomes and alternatives are more complex, but the
Kelly rule logic does still apply. It was made popular by Ed Thorp, who first applied it
profitably to gambling (described in Beat the Dealer) and later started the successful hedge
fund Princeton/Newport Partners.

 With continuous outcomes, the growth rate of capital is defined by an integrate over the
probability distribution of the different returns that can be optimized numerically:

We can solve this expression for the optimal f* using the scipy.optimize module:

def norm_integral(f, m, st):
 val, er = quad(lambda s: np.log(1+f*s)*norm.pdf(s, m, st), m-3*st,
 m+3*st)
 return -val

def norm_dev_integral(f, m, st):
 val, er = quad(lambda s: (s/(1+f*s))*norm.pdf(s, m, st), m-3*st,
 m+3*st)
 return val

Strategy Evaluation Chapter 5

[144]

m = .058
s = .216
Option 1: minimize the expectation integral
sol = minimize_scalar(norm_integral, args=(
 m, s), bounds=[0., 2.], method='bounded')
print('Optimal Kelly fraction: {:.4f}'.format(sol.x))

Optimal investment – multiple assets
We will use an example with various equities. E. Chan (2008) illustrates how to arrive at a
multi-asset application of the Kelly Rule, and that the result is equivalent to the (potentially
levered) maximum Sharpe ratio portfolio from the mean-variance optimization.

The computation involves the dot product of the precision matrix, which is the inverse of
the covariance matrix, and the return matrix:

mean_returns = monthly_returns.mean()
cov_matrix = monthly_returns.cov()
precision_matrix = pd.DataFrame(inv(cov_matrix), index=stocks,
columns=stocks)
kelly_wt = precision_matrix.dot(mean_returns).values

The Kelly Portfolio is also shown in the efficient frontier diagram (after normalization so
that the absolute weights sum to one). Many investors prefer to reduce the Kelly weights to
reduce the strategy's volatility, and Half-Kelly has become particularly popular.

Risk parity
The fact that the previous 15 years have been characterized by two major crises in the
global equity markets, a consistently upwardly-sloping yield curve, and a general decline
in interest rates made risk parity look like a particularly compelling option. Many
institutions carved out strategic allocations to risk parity to further diversify their
portfolios.

A simple implementation of risk parity allocates assets according to the inverse of their
variances, ignoring correlations and, in particular, return forecasts:

var = monthly_returns.var()
risk_parity_weights = var / var.sum()

The risk parity portfolio is also shown in the efficient frontier diagram at the beginning of
this section.

Strategy Evaluation Chapter 5

[145]

Risk factor investment
An alternative framework for estimating input is to work down to the underlying
determinants, or factors, that drive the risk and returns of assets. If we understand how the
factors influence returns, and we understand the factors, we will be able to construct more
robust portfolios.

The concept of factor investing looks beyond asset class labels to the underlying factor risks
to maximize the benefits of diversification. Rather than distinguishing investment vehicles
by labels such as hedge funds or private equity, factor investing aims to identify distinct
risk-return profiles based on differences in exposure to fundamental risk factors. The naïve
approach to mean-variance investing plugs (artificial) groupings as distinct asset classes
into a mean-variance optimizer. Factor investing recognizes that such groupings share
many of the same factor risks as traditional asset classes. Diversification benefits can be
overstated, as investors discovered during the last crisis when correlations among risky
asset classes increased due to exposure to the same underlying factor risks.

Hierarchical risk parity
Mean-variance optimization is very sensitive to the estimates of expected returns and the
covariance of these returns. The covariance matrix inversion also becomes more
challenging and less accurate when returns are highly correlated, as is often the case in
practice. The result has been called the Markowitz curse: when diversification is more
important because investments are correlated, conventional portfolio optimizers will likely
produce an unstable solution. The benefits of diversification can be more than offset by
mistaken estimates. As discussed, even naive, equally-weighted portfolios can beat mean-
variance and risk-based optimization out of sample.

More robust approaches have incorporated additional constraints (Clarke et al., 2002),
Bayesian priors (Black and Litterman, 1992), or used shrinkage estimators to make the
precision matrix more numerically stable (Ledoit and Wolf [2003], available in scikit-
learn (http://scikit- learn. org/ stable/ modules/ generated/ sklearn. covariance.
LedoitWolf.html). Hierarchical risk parity (HRP), in contrast, leverages unsupervised
machine learning to achieve superior out-of-sample portfolio allocations.

A recent innovation in portfolio optimization leverages graph theory and hierarchical
clustering to construct a portfolio in three steps (Lopez de Prado, 2015):

Define a distance metric so that correlated assets are close to each other, and1.
apply single-linkage clustering to identify hierarchical relationships

http://scikit-learn.org/stable/modules/generated/sklearn.covariance.LedoitWolf.html
http://scikit-learn.org/stable/modules/generated/sklearn.covariance.LedoitWolf.html
http://scikit-learn.org/stable/modules/generated/sklearn.covariance.LedoitWolf.html
http://scikit-learn.org/stable/modules/generated/sklearn.covariance.LedoitWolf.html
http://scikit-learn.org/stable/modules/generated/sklearn.covariance.LedoitWolf.html
http://scikit-learn.org/stable/modules/generated/sklearn.covariance.LedoitWolf.html
http://scikit-learn.org/stable/modules/generated/sklearn.covariance.LedoitWolf.html
http://scikit-learn.org/stable/modules/generated/sklearn.covariance.LedoitWolf.html
http://scikit-learn.org/stable/modules/generated/sklearn.covariance.LedoitWolf.html
http://scikit-learn.org/stable/modules/generated/sklearn.covariance.LedoitWolf.html
http://scikit-learn.org/stable/modules/generated/sklearn.covariance.LedoitWolf.html
http://scikit-learn.org/stable/modules/generated/sklearn.covariance.LedoitWolf.html
http://scikit-learn.org/stable/modules/generated/sklearn.covariance.LedoitWolf.html
http://scikit-learn.org/stable/modules/generated/sklearn.covariance.LedoitWolf.html
http://scikit-learn.org/stable/modules/generated/sklearn.covariance.LedoitWolf.html
http://scikit-learn.org/stable/modules/generated/sklearn.covariance.LedoitWolf.html
http://scikit-learn.org/stable/modules/generated/sklearn.covariance.LedoitWolf.html
http://scikit-learn.org/stable/modules/generated/sklearn.covariance.LedoitWolf.html
http://scikit-learn.org/stable/modules/generated/sklearn.covariance.LedoitWolf.html
http://scikit-learn.org/stable/modules/generated/sklearn.covariance.LedoitWolf.html
http://scikit-learn.org/stable/modules/generated/sklearn.covariance.LedoitWolf.html
http://scikit-learn.org/stable/modules/generated/sklearn.covariance.LedoitWolf.html

Strategy Evaluation Chapter 5

[146]

Use the hierarchical correlation structure to quasi-diagonalize the covariance2.
matrix.
Apply top-down inverse-variance weighting using a recursive bisectional search3.
to treat clustered assets as complements rather than substitutes in
portfolio construction and to reduce the number of degrees of freedom.

A related method to construct hierarchical clustering portfolios (HCP) was presented by
Raffinot (2016). Conceptually, complex systems such as financial markets tend to have a
structure and are often organized in a hierarchical way, while the interaction among
elements in the hierarchy shapes the dynamics of the system. Correlation matrices also lack
the notion of hierarchy, which allows weights to vary freely and in potentially unintended
ways.

Both HRP and HCP have been tested by JPM on various equity universes. The
HRP, in particular, produced equal or superior risk-adjusted returns and Sharpe ratios
compared to naive diversification, the maximum-diversified portfolios, or GMV portfolios.

We will present the Python implementation in Chapter 12, Unsupervised Learning.

Summary
In this chapter, we covered the important topic of portfolio management, which involves
the combination of investment positions with the objective of managing risk-return trade-
offs. We introduced pyfolio to compute and visualize key risk and return metrics and to
compare the performance of various algorithms.

We saw how important accurate predictions are to optimize portfolio weights and
maximize diversification benefits. We also explored how ML can facilitate more effective
portfolio construction by learning hierarchical relationships from the asset-returns
covariance matrix.

We will now move on to the second part of this book, which focuses on the use of ML
models. These models will produce more accurate predictions by making more effective
use of more diverse information to capture more complex patterns than the simpler alpha
factors that were most prominent so far.

We will begin by training, testing, and tuning linear models for regression and
classification using cross-validation to achieve robust out-of-sample performance. We will
also embed these models within the framework of defining and backtesting algorithmic
trading strategies, which we covered in the last two chapters.

6
The Machine Learning Process

In this chapter, we will start to illustrate how you can use a broad range of supervised and
unsupervised machine learning (ML) models for algorithmic trading. We will explain each
model's assumptions and use cases before we demonstrate relevant applications using
various Python libraries. The categories of models will include:

Linear models for the regression and classification of cross-section, time series,
and panel data
Generalized additive models, including non-linear tree-based models, such as
decision trees
Ensemble models, including random forest and gradient-boosting machines
Unsupervised linear and nonlinear methods for dimensionality reduction and
clustering
Neural network models, including recurrent and convolutional architectures
Reinforcement learning models

We will apply these models to the market, fundamental, and alternative data sources
introduced in the first part of this book. We will further build on the material covered so far
by showing you how to embed these models in an algorithmic trading strategy to generate
or combine alpha factors or to optimize the portfolio-management process and evaluate
their performance.

There are several aspects that many of these models and their uses have in common. This
chapter covers these common aspects so that we can focus on model-specific usage in the
following chapters. They include the overarching goal of learning a functional relationship
from data by optimizing an objective or loss function. They also include the closely related
methods of measuring model performance.

The Machine Learning Process Chapter 6

[148]

We distinguish between unsupervised and supervised learning and supervised regression
and classification problems, and outline use cases for algorithmic trading. We contrast the
use of supervised learning for statistical inference of relationships between input and
output data with the use for the prediction of future outputs from future inputs. We also
illustrate how prediction errors are due to the model's bias or variance, or because of a high
noise-to-signal ratio in the data. Most importantly, we present methods to diagnose sources
of errors and improve your model's performance.

In this chapter, we will cover the following topics:

How supervised and unsupervised learning using data works
How to apply the ML workflow
How to formulate loss functions for regression and classification
How to train and evaluate supervised learning models
How the bias-variance trade-off impacts prediction errors
How to diagnose and address prediction errors
How to train a model using cross-validation to manage the bias-variance trade-
off
How to implement cross-validation using scikit-learn
Why the nature of financial data requires different approaches to out-of-sample
testing

If you are already quite familiar with ML, feel free to skip ahead and dive right into
learning how to use linear models to produce and combine alpha factors for an algorithmic
trading strategy.

Learning from data
There have been many definitions of ML, which all revolve around the automated detection
of meaningful patterns in data. Two prominent examples include:

AI pioneer Arthur Samuelson defined ML in 1959 as a subfield of computer
science that gives computers the ability to learn without being explicitly
programmed.
Toni Mitchell, one of the current leaders in the field, pinned down a well-posed
learning problem more specifically in 1998: a computer program learns from
experience with respect to a task and a performance measure whether the
performance of the task improves with experience.

The Machine Learning Process Chapter 6

[149]

Experience is presented to an algorithm in the form of training data. The principal
difference to previous attempts at building machines that solve problems is that the rules
that an algorithm uses to make decisions are learned from the data as opposed to being
programmed or hard-coded—this was the case for expert systems prominent in the 1980s.

The key challenge of automated learning is to identify patterns in the training data that are
meaningful when generalizing the model's learning to new data. There are a large number
of potential patterns that a model could identify, while the training data only constitute a
sample of the larger set of phenomena that the algorithm needs to perform the task in the
future. The infinite number of functions that could generate the given outputs from the
given input make the search process impossible to solve without restrictions on the eligible
set of functions.

The types of patterns that an algorithm is capable of learning are limited by the size of
its hypothesis space on the one hand and the amount of information contained in the
sample data on the other. The size of the hypothesis space varies significantly between
algorithms. On the one hand, this limitation enables a successful search and on the other
hand, it implies an inductive bias as the algorithm generalizes from the training sample to
new data.

Hence, the key challenge becomes a matter of how to choose a model with a hypothesis
space large enough to contain a solution to the learning problem, yet small enough to
ensure reliable generalization given the size of the training data. With more and more
informative data, a model with a larger hypothesis space will be successful.

The no-free-lunch theorem states that there is no universal learning algorithm. Instead, a
learner's hypothesis space has to be tailored to a specific task using prior knowledge about
the task domain in order for the search of meaningful patterns to succeed. We will pay
close attention to the assumptions that a model makes about data relationships for a
specific task throughout this chapter, and emphasize the importance of matching these
assumptions with empirical evidence gleaned from data exploration. The process required
to master the task can be differentiated into supervised, unsupervised, and reinforcement
learning.

The Machine Learning Process Chapter 6

[150]

Supervised learning
Supervised learning is the most commonly used type of ML. We will dedicate most of the
chapters in this book to learning about the various applications of models in this category.
The term supervised implies the presence of an outcome variable that guides the learning
process—that is, it teaches the algorithm the correct solution to the task that is
being learned. Supervised learning aims at generalizing a functional relationship between
input and output data that is learned from individual samples and applying it to new data.

The output variable is also, depending on the field, interchangeably called the label, target,
outcome, endogenous, or left-hand-side variable. We will use yi for observations i = 1, ...,
N, or y in vector notation. Some tasks are represented by several outcomes, also called
multilabel problems. The input data for a supervised learning problem is also known
as features, exogenous, and right-hand-side variables, denoted by an xi for a vector of
features for observations i = 1, ..., N, or X in matrix notation.

The solution to a supervised learning problem is a function () that represents what the
model learned about the input-output relationship from the sample and approximates the
true relationship, represented with . This function can be used to infer statistical
associations or potentially even causal relationships among variables of interest beyond the
sample, or it can be used to predict outputs for new input data.

Both goals face an important trade-off: more complex models have more moving parts that
are capable of representing more nuanced relationships, but they may also be more difficult
to inspect. They are also likely to overfit and learn random noise particular to the training
sample, as opposed to a systematic signal that represents a general pattern of the input-
output relationship. Overly simple models, on the other hand, will miss signals and deliver
biased results. This trade-off is known as the bias-variance trade-off in supervised
learning, but conceptually this also applies to the other forms of ML where overly complex
models may perform poorly beyond the training data.

Unsupervised learning
When solving an unsupervised learning problem, we only observe the features and have no
measurements of the outcome. Instead of the prediction of future outcomes or the inference
of relationships among variables, the task is to find structure in the data without any
outcome information to guide the search process.

The Machine Learning Process Chapter 6

[151]

Often, unsupervised algorithms aim to learn a new representation of the input data that is
useful for some other tasks. This includes coming up with labels that identify
commonalities among observations, or a summarized description that captures relevant
information while requiring data points or features. Unsupervised learning algorithms also
differ from supervised learning algorithms in the assumptions they make about the nature
of the structure they are aiming to discover.

Applications
There are several helpful uses of unsupervised learning that can be applied to algorithmic
trading, including the following:

Grouping together securities with similar risk and return characteristics (see
hierarchical risk parity in this chapter (which looks at portfolio optimization))
Finding a small number of risk factors driving the performance of a much larger
number of securities
Identifying trading and price patterns that differ systematically and may pose
higher risks
Identifying latent topics in a body of documents (for example, earnings call
transcripts) that comprise the most important aspects of those documents

At a high level, these applications rely on methods to identify clusters and methods to
reduce the dimensionality of the data.

Cluster algorithms
Cluster algorithms use a measure of similarity to identify observations or data attributes
that contain similar information. They summarize a dataset by assigning a large number of
data points to a smaller number of clusters so that the cluster members are more closely
related to each other than to members of other clusters.

Cluster algorithms primarily differ with respect to the type of clusters that they will
produce, which implies different assumptions about the data generation process, listed as
follows:

K-means clustering: Data points belong to one of the k clusters of equal size that
take an elliptical form
Gaussian mixture models: Data points have been generated by any of the
various multivariate normal distributions

The Machine Learning Process Chapter 6

[152]

Density-based clusters: Clusters are of an arbitrary shape and are defined only
by the existence of a minimum number of nearby data points
Hierarchical clusters: Data points belong to various supersets of groups that are
formed by successively merging smaller clusters

Dimensionality reduction
Dimensionality reduction produces new data that captures the most important information
contained in the source data. Rather than grouping existing data into clusters, these
algorithms transform existing data into a new dataset that uses significantly fewer features
or observations to represent the original information.

Algorithms differ with respect to the nature of the new dataset they will produce, as shown
in the following list:

Principal component analysis (PCA): Finds the linear transformation that
captures most of the variance in the existing dataset
Manifold learning: Identifies a nonlinear transformation that produces a lower-
dimensional representation of the data
Autoencoders: Uses neural networks to compress data non-linearly with
minimal loss of information

We will dive deeper into linear, non-linear, and neural-network-based unsupervised
learning models in several of the following chapters, including important applications of
natural language processing (NLP) in the form of topic modeling and Word2vec feature
extraction.

Reinforcement learning
Reinforcement learning is the third type of ML. It aims to choose the action that yields the
highest reward, given a set of input data that describes a context or environment. It is both
dynamic and interactive: the stream of positive and negative rewards impacts the
algorithm's learning, and actions taken now may influence both the environment and
future rewards.

The trade-off between the exploitation of a course of action that has been learned to yield a
certain reward and the exploration of new actions that may increase the reward in the
future gives rise to a trial-and-error approach. Reinforcement learning optimizes the agent's
learning using dynamical systems theory and, in particular, the optimal control of Markov
decision processes with incomplete information.

The Machine Learning Process Chapter 6

[153]

Reinforcement learning differs from supervised learning, where the available training data
lays out both the context and the correct decision for the algorithm. It is tailored to
interactive settings where the outcomes only become available over time and learning has
to proceed in an online or continuous fashion as the agent acquires new
experience. However, some of the most notable progress in Artificial Intelligence (AI)
involves reinforcement that uses deep learning to approximate functional relationships
between actions, environments, and future rewards. It also differs from unsupervised
learning because feedback of the consequences will be available, albeit with a delay.

Reinforcement learning is particularly suitable for algorithmic trading because the concept
of a return-maximizing agent in an uncertain, dynamic environment has much in common
with an investor or a trading strategy that interacts with financial markets. This approach
has been successfully applied to game-playing agents, most prominently to the game of Go,
but also to complex video games. It is also used in robotics—for example, self-driving
cars—or to personalize services such as website offerings based on user interaction. We will
introduce reinforcement learning approaches to building an algorithmic trading strategy in
Chapter 21, Reinforcement Learning.

The machine learning workflow
Developing a ML solution for an algorithmic trading strategy requires a systematic
approach to maximize the chances of success while economizing on resources. It is also
very important to make the process transparent and replicable in order to facilitate
collaboration, maintenance, and later refinements.

The following chart outlines the key steps from problem definition to the deployment of a
predictive solution:

The Machine Learning Process Chapter 6

[154]

The process is iterative throughout the sequence, and the effort required at different stages
will vary according to the project, but this process should generally include the following
steps:

Frame the problem, identify a target metric, and define success1.
Source, clean, and validate the data2.
Understand your data and generate informative features3.
Pick one or more machine learning algorithms suitable for your data4.
Train, test, and tune your models5.
Use your model to solve the original problem6.

We will walk through these steps in the following sections using a simple example to
illustrate some of the key points.

Basic walkthrough – k-nearest neighbors
The machine_learning_workflow.ipynb notebook in this chapter's folder of the book's
GitHub repository contains several examples that illustrate the machine learning workflow
using a dataset of house prices.

We will use the fairly straightforward k-nearest neighbors (KNN) algorithm that allows us
to tackle both regression and classification problems.

In its default sklearn implementation, it identifies the k nearest data points (based on the
Euclidean distance) to make a prediction. It predicts the most frequent class among the
neighbors or the average outcome in the classification or regression case, respectively.

Frame the problem – goals and metrics
The starting point for any machine learning exercise is the ultimate use case it aims to
address. Sometimes, this goal will be statistical inference in order to identify an association
between variables or even a causal relationship. Most frequently, however, the goal will be
the direct prediction of an outcome to yield a trading signal.

Both inference and prediction use metrics to evaluate how well a model achieves its
objective. We will focus on common objective functions and the corresponding error
metrics for predictive models that can be distinguished by the variable type of the output:
continuous output variables imply a regression problem, categorical variables
imply classification, and the special case of ordered categorical variables implies
ranking problems.

The Machine Learning Process Chapter 6

[155]

The problem may be the efficient combination of several alpha factors and could be framed
as a regression problem that aims to predict returns, a binary classification problem that
aims to predict the direction of future price movements, or a multiclass problem that aims
to assign stocks to various performance classes. In the following section, we will introduce
these objectives and look at how to measure and interpret related error metrics.

Prediction versus inference
The functional relationship produced by a supervised learning algorithm can be used
for inference—that is, to gain insights into how the outcomes are generated—or
for prediction—that is, to generate accurate output estimates (represented
by) for unknown or future inputs (represented by X).

For algorithmic trading, inference can be used to estimate the causal or statistical
dependence of the returns of an asset on a risk factor, whereas prediction can be used to
forecast the risk factor. Combining the two can yield a prediction of the asset price, which
in turn can be translated into a trading signal.

Statistical inference is about drawing conclusions from sample data about the parameters of
the underlying probability distribution or the population. Potential conclusions include
hypothesis tests about the characteristics of the distribution of an individual variable, or the
existence or strength of numerical relationships among variables. They also include point or
interval estimates of statistical metrics.

Inference depends on the assumptions about the process that generates the data in the first
place. We will review these assumptions and the tools that are used for inference with
linear models where they are well established. More complex models make fewer
assumptions about the structural relationship between input and output, and instead
approach the task of function approximation more openly while treating the data-
generating process as a black box. These models, including decision trees, ensemble
models, and neural networks, are focused on and often outperform when used for
prediction tasks. However, random forests have recently gained a framework for inference
that we will introduce later.

Causal inference
Causal inference aims to identify relationships so that certain input values imply certain
outputs—for example, a certain constellation of macro variables causing the price of a given
asset to move in a certain way, assuming all other variables remain constant.

The Machine Learning Process Chapter 6

[156]

Statistical inference about relationships among two or more variables produces measures of
correlation that can only be interpreted as a causal relationship when several other
conditions are met—for example, when alternative explanations or reverse causality has
been ruled out. Meeting these conditions requires an experimental setting where all
relevant variables of interest can be fully controlled to isolate causal relationships.
Alternatively, quasi-experimental settings expose units of observations to changes in inputs
in a randomized way to rule out that other observable or unobservable features are
responsible for the observed effects of the change in the environment.

These conditions are rarely met so inferential conclusions need to be treated with care. The
same applies to the performance of predictive models that also rely on the statistical
association between features and outputs, which may change with other factors that are not
part of the model.

The non-parametric nature of the KNN model does not lend itself well to inference, so we'll
postpone this step in the workflow until we encounter linear models in the next chapter.

Regression problems
Regression problems aim to predict a continuous variable. The root-mean-square error
(RMSE) is the most popular loss function and error metric, not least because it is
differentiable. The loss is symmetric, but larger errors weigh more in the calculation. Using
the square root has the advantage of measuring the error in the units of the target
variable. The same metric in combination with the RMSE log of the error (RMSLE) is
appropriate when the target is subject to exponential growth because of its asymmetric
penalty that weights negative errors less than positive errors. You can also log-transform
the target first and then use the RMSE, as we do in the example later in this section.

The mean absolute errors (MAE) and median absolute errors (MedAE) are symmetric but
do not weigh larger errors more. The MedAE is robust to outliers.

The explained variance score computes the proportion of the target variance that the model
accounts for and varies between 0 and 1. The R2 score or coefficient of determination yields
the same outcome the mean of the residuals is 0, but can differ otherwise. In particular, it
can be negative when calculated on out-of-sample data (or for a linear regression without
intercept).

The Machine Learning Process Chapter 6

[157]

The following table defines the formulas used for calculation and the corresponding
sklearn function that can be imported from the metrics module. The
scoring parameter is used in combination with automated train-test functions (such as
cross_val_score and GridSearchCV) that we will introduce later in this section, and
which are illustrated in the accompanying notebook:

Name Formula sklearn Scoring parameter
Mean
squared
error

mean_squared_error neg_mean_squared_error

Mean
squared
log error

mean_squared_log_error neg_mean_squared_log_error

Mean
absolute
error

mean_absolute_error neg_mean_absolute_error

Median
absolute
error

median_absolute_error neg_median_absolute_error

Explained
variance

explained_variance_score explained_variance

R2 score r2_score r2

The following screenshot shows the various error metrics for the house price regression
demonstrated in the notebook:

The Machine Learning Process Chapter 6

[158]

The sklearn function also supports multilabel evaluation—that is, assigning multiple
outcome values to a single observation; see the documentation referenced on GitHub for
more details (https:/ /github. com/ PacktPublishing/ Hands- On- Machine- Learning- for-
Algorithmic-Trading/ tree/ master/ Chapter06).

Classification problems
Classification problems have categorical outcome variables. Most predictors will output a
score to indicate whether an observation belongs to a certain class. In the second step, these
scores are then translated into actual predictions.

In the binary case, where we will label the classes positive and negative, the score typically
varies between zero or is normalized accordingly. Once the scores are converted into 0-1
predictions, there can be four outcomes, because each of the two existing classes can be
either correctly or incorrectly predicted. With more than two classes, there can be more
cases if you differentiate between the several potential mistakes.

All error metrics are computed from the breakdown of predictions across the four fields of
the 2 x 2 confusion matrix that associates actual and predicted classes. The metrics listed in
the table shown in the following diagram, such as accuracy, evaluate a model for a given
threshold:

https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading/tree/master/Chapter06

The Machine Learning Process Chapter 6

[159]

A classifier does not necessarily need to output calibrated probabilities, but should rather
produce scores that are relative to each other in distinguishing positive from negative cases.
Hence, the threshold is a decision variable that can and should be optimized, taking into
account the costs and benefits of correct and incorrect predictions. A lower threshold
implies more positive predictions, with a potentially rising false positive rate, and for a
higher threshold, the opposite is likely to be true.

Receiver operating characteristics and the area under the curve
The receiver operating characteristics (ROC) curve allows us to visualize, organize, and
select classifiers based on their performance. It computes all the combinations of true
positive rates (TPR) and false positive rates (FPR) that result from producing predictions
using any of the predicted scores as a threshold. It then plots these pairs on a square, the
side of which has a measurement of one in length.

A classifier that makes random predictions (taking into account class imbalance) will on
average yield TPR and FPR that are equal so that the combinations will lie on the diagonal,
which becomes the benchmark case. Since an underperforming classifier would benefit
from relabeling the predictions, this benchmark also becomes the minimum.

The area under the curve (AUC) is defined as the area under the ROC plot that varies
between 0.5 and the maximum of 1. It is a summary measure of how well the classifier's
scores are able to rank data points with respect to their class membership. More specifically,
the AUC of a classifier has the important statistical property of representing the probability
that the classifier will rank a randomly chosen positive instance higher than a randomly
chosen negative instance, which is equivalent to the Wilcoxon ranking test. In addition, the
AUC has the benefit of not being sensitive to class imbalances.

Precision-recall curves
When predictions for one of the classes are of particular interest, precision and recall curves
visualize the trade-off between these error metrics for different thresholds. Both measures
evaluate the quality of predictions for a particular class. The following list shows how they
are applied to the positive class:

Recall measures the share of actual positive class members that a classifier
predicts as positive for a given threshold. It originates in information retrieval
and measures the share of relevant documents successfully identified by a search
algorithm.
Precision, in contrast, measures the share of positive predictions that are correct.

The Machine Learning Process Chapter 6

[160]

Recall typically increases with a lower threshold, but precision may decrease. Precision-
recall curves visualize the attainable combinations and allow for the optimization of the
threshold given the costs and benefits of missing a lot of relevant cases or producing lower-
quality predictions.

The F1 score is a harmonic mean of precision and recall for a given threshold and can be
used to numerically optimize the threshold while taking into account the relative weights
that these two metrics should assume.

The following chart illustrates the ROC curve and corresponding AUC alongside the
precision-recall curve and the F1 score that, using equal weights for precision and recall,
yields an optimal threshold of 0.37. The chart is taken from the accompanying notebook
where you can find the code for the KNN classifier that operates on binarized housing
prices:

Collecting and preparing the data
We already addressed important aspects of the sourcing of market, fundamental, and
alternative data, and will continue to work with various examples of these sources as we
illustrate the application of the various models.

In addition to market and fundamental data that we will access through the Quantopian
platform, we will also acquire and transform text data as we explore natural language
processing and image data when we look at image processing and recognition. Besides
obtaining, cleaning, and validating the data to relate it to trading data typically available in
a time-series format, it is important to store it in a format that allows for fast access to
enable quick exploration and iteration. We have recommended the HDF and parquet
formats. For larger data volumes, Apache Spark represents the best solution.

The Machine Learning Process Chapter 6

[161]

Explore, extract, and engineer features
Understanding the distribution of individual variables and the relationships among
outcomes and features is the basis for picking a suitable algorithm. This typically starts
with visualizations such as scatter plots, as illustrated in the companion notebook (and
shown in the following image), but also includes numerical evaluations ranging from linear
metrics, such as the correlation, to nonlinear statistics, such as the Spearman rank
correlation coefficient that we encountered when we introduced the information coefficient.
It also includes information-theoretic measures, such as mutual information, as illustrated
in the next subsection:

Scatter plots

A systematic exploratory analysis is also the basis of what is often the single most
important ingredient of a successful predictive model: the engineering of features that
extract information contained in the data, but which are not necessarily accessible to the
algorithm in their raw form. Feature engineering benefits from domain expertise, the
application of statistics and information theory, and creativity.

It relies on an ingenious choice of data transformations that effectively tease out the
systematic relationship between input and output data. There are many choices that
include outlier detection and treatment, functional transformations, and the combination of
several variables, including unsupervised learning. We will illustrate examples throughout
but will emphasize that this feature is best learned through experience. Kaggle is a great
place to learn from other data scientists who share their experiences with the Kaggle
community.

Using information theory to evaluate features
The mutual information (MI) between a feature and the outcome is a measure of the
mutual dependence between the two variables. It extends the notion of correlation to
nonlinear relationships. More specifically, it quantifies the information obtained about one
random variable through the other random variable.

The Machine Learning Process Chapter 6

[162]

The concept of MI is closely related to the fundamental notion of entropy of a random
variable. Entropy quantifies the amount of information contained in a random variable.
Formally, the mutual information—I(X, Y)—of two random variables, X and Y, is defined
as the following:

The sklearn function implements feature_selection.mutual_info_regression that
computes the mutual information between all features and a continuous outcome to select
the features that are most likely to contain predictive information. There is also a
classification version (see the documentation for more details). The notebook
mutual_information.ipynb notebook contains an application to the financial data we
created in Chapter 4, Alpha Factor Research.

Selecting an ML algorithm
The remainder of this book will introduce several model families, ranging from linear
models, which make fairly strong assumptions about the nature of the functional
relationship between input and output variables, to deep neural networks, which make
very few assumptions. As mentioned in the introductory section, fewer assumptions will
require more data with significant information about the relationship so that the learning
process can be successful.

We will outline the key assumptions and how to test them where applicable as we
introduce these models.

Design and tune the model
The ML process includes steps to diagnose and manage model complexity based on
estimates of the model's generalization error. An unbiased estimate requires a statistically
sound and efficient procedure, as well as error metrics that align with the output variable
type, which also determines whether we are dealing with a regression, classification, or
ranking problem.

The Machine Learning Process Chapter 6

[163]

The bias-variance trade-off
The errors that an ML model makes when predicting outcomes for new input data can be
broken down into reducible and irreducible parts. The irreducible part is due to random
variation (noise) in the data that is not measured, such as relevant but missing variables or
natural variation. The reducible part of the generalization error, in turn, can be broken
down into bias and variance. Both are due to differences between the true functional
relationship and the assumptions made by the machine learning algorithm, as detailed in
the following list:

Error due to bias: The hypothesis is too simple to capture the complexity of the
true functional relationship. As a result, whenever the model attempts to learn
the true function, it makes systematic mistakes and, on average, the predictions
will be similarly biased. This is also called underfitting.
Error due to variance: The algorithm is overly complex in view of the true
relationship. Instead of capturing the true relationship, it overfits to the data and
extracts patterns from the noise. As a result, it learns different functional
relationships from each sample, and out-of-sample predictions will vary widely.

Underfitting versus overfitting
The following diagram illustrates overfitting by approximating a cosine function using
increasingly complex polynomials and measuring the in-sample error. More specifically,
we draw 10 random samples with some added noise (n = 30) to learn a polynomial of
varying complexity (see the code in the accompanying notebook). Each time, the model
predicts new data points and we capture the mean-squared error for these predictions, as
well as the standard deviation of these errors.

The Machine Learning Process Chapter 6

[164]

The left-hand panel in the following diagram shows a polynomial of degree 1; a straight
line clearly underfits the true function. However, the estimated line will not differ
dramatically from one sample drawn from the true function to the next. The middle panel
shows that a degree 5 polynomial approximates the true relationship reasonably well on
the [0, 1] interval. On the other hand, a polynomial of degree 15 fits the small sample almost
perfectly, but provides a poor estimate of the true relationship: it overfits to the random
variation in the sample data points, and the learned function will vary strongly with each
sample drawn:

Managing the trade-off
Let's further illustrate the impact of overfitting versus underfitting by trying to learn a
Taylor series approximation of the cosine function of ninth degree with some added noise.
In the following diagram, we draw random samples of the true function and
fit polynomials that underfit, overfit, and provide an approximately correct degree of
flexibility. We then predict out-of-sample and measure the RMSE.

The high bias but low variance of a polynomial of degree 3 compares to the low bias but
exceedingly high variance of the various prediction errors visible in the first panel. The left-
hand panel shows the distribution of the errors that result from subtracting the true
function values. The underfit case of a straight line produces a poor in-sample fit and is
significantly off target out of sample. The overfit model shows the best fit in-sample with
the smallest dispersion of errors, but the price is a large variance out-of-sample. The
appropriate model that matches the functional form of the true model performs the best by
far out-of-sample.

The Machine Learning Process Chapter 6

[165]

The right-hand panel of the following screenshot shows the actual predictions rather than
the errors to demonstrate what the different types of fit look like in practice:

Learning curves
A learning curve plots the evolution of train and test errors against the size of the dataset
used to learn the functional relationship. It is a useful tool to diagnose the bias-variance
trade-off for a given model because the errors will behave differently. A model with a high
bias will have a high but similar training error, both in-sample and out-of-sample, whereas
an overfit model will have a very low training error.

The Machine Learning Process Chapter 6

[166]

The declining out-of-sample error illustrates that overfit models may benefit from
additional data or tools to limit the model's complexity, such as regularization,
whereas underfit models need to use either more features or otherwise increase the
complexity of the model, as shown in the following screenshot:

How to use cross-validation for model selection
When several candidate models (that is, algorithms) are available for your use case, the act
of choosing one of them is called the model selection problem. Model selection aims to
identify the model that will produce the lowest prediction error given new data.

An unbiased estimate of this generalization error requires a test on data that was not part of
model training. Hence, we only use part of the available data to train the model and set
aside another part of the data to test the model. In order to obtain an unbiased estimate of
the prediction error, absolutely no information about the test set may leak into the training
set, as shown in the following diagram:

The Machine Learning Process Chapter 6

[167]

There are several methods that can be used to split the available data, which differ in terms
of the amount of data used for training, the variance of the error estimates, the
computational intensity, and whether structural aspects of the data are taken into account
when splitting the data.

How to implement cross-validation in Python
 We will illustrate various options for splitting data into training and test sets by showing
how the indices of a mock dataset with ten observations are assigned to the train and test
set (see cross_validation.py for details), as shown in following code:

data = list(range(1, 11))
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Basic train-test split
For a single split of your data into a training and a test set,
use sklearn.model_selection.train_test_split, where the shuffle parameter, by
default ensures the randomized selection of observations, which in turn can be replicated
by setting random_state. There is also a stratify parameter that, for a classification
problem, ensures that the train and test sets will contain approximately the same shares of
each class, as shown in the following code:

train_test_split(data, train_size=.8)
[[8, 7, 4, 10, 1, 3, 5, 2], [6, 9]]

The Machine Learning Process Chapter 6

[168]

In this case, we train a model using all data except row numbers 6 and 9, which will be
used to generate predictions and measure the errors given on the know labels. This method
is useful for quick evaluation but is sensitive to the split, and the standard error of the test
error estimate will be higher.

Cross-validation
Cross-validation (CV) is a popular strategy for model selection. The main idea behind CV
is to split the data one or several times so that each split is used once as a validation set and
the remainder as a training set: part of the data (the training sample) is used to train the
algorithm, and the remaining part (the validation sample) is used for estimating the risk of
the algorithm. Then, CV selects the algorithm with the smallest estimated risk.

While the data-splitting heuristic is very general, a key assumption of CV is that the data is
independently and identically distributed (IID). In the following sections, we will see
that, for time series data, this is often not the case and requires a different approach.

Using a hold-out test set
When selecting hyperparameters based on their validation score, be aware that this
validation score is biased because of multiple tests, and is no longer a good estimate of the
generalization error. For an unbiased estimate of the error rate, we have to estimate the
score from a fresh dataset, as shown in the following diagram:

The Machine Learning Process Chapter 6

[169]

For this reason, we use a three-way split of the data, as illustrated in the preceding diagram:
one part is used in cross-validation and is repeatedly split into a training and validation set.
The remainder is set aside as a hold-out set that is only used once cross-validation is
complete to generate an unbiased test error estimate. We will illustrate this method as we
start building ML models in the next chapter.

KFold iterator
The sklearn.model_selection.KFold iterator produces several disjunct splits and
assigns each of these splits once to the validation set, as shown in the following code:

kf = KFold(n_splits=5)
for train, validate in kf.split(data):
 print(train, validate)

[2 3 4 5 6 7 8 9] [0 1]
[0 1 4 5 6 7 8 9] [2 3]
[0 1 2 3 6 7 8 9] [4 5]
[0 1 2 3 4 5 8 9] [6 7]
[0 1 2 3 4 5 6 7] [8 9]

In addition to the number of splits, most CV objects take a shuffle argument that ensures
randomization. To render results reproducible, set the random_state, as follows:

kf = KFold(n_splits=5, shuffle=True, random_state=42)
for train, validate in kf.split(data):
 print(train, validate)

[0 2 3 4 5 6 7 9] [1 8]
[1 2 3 4 6 7 8 9] [0 5]
[0 1 3 4 5 6 8 9] [2 7]
[0 1 2 3 5 6 7 8] [4 9]
[0 1 2 4 5 7 8 9] [3 6]

Leave-one-out CV
The original CV implementation used a leave-one-out method that used each observation
once as the validation set, as shown in the following code:

loo = LeaveOneOut()
for train, validate in loo.split(data):
 print(train, validate)

[1 2 3 4 5 6 7 8 9] [0]
[0 2 3 4 5 6 7 8 9] [1]
...

The Machine Learning Process Chapter 6

[170]

[0 1 2 3 4 5 6 7 9] [8]
[0 1 2 3 4 5 6 7 8] [9]

This maximizes the number of models that are trained, which increases computational
costs. While the validation sets do not overlap, the overlap of training sets is maximized,
driving up the correlation of models and their prediction errors. As a result, the variance of
the prediction error is higher for a model with a larger number of folds.

Leave-P-Out CV
A similar version to leave-one-out CV is leave-P-out CV, which generates all possible
combinations of p data rows, as shown in the following code:

lpo = LeavePOut(p=2)
for train, validate in lpo.split(data):
 print(train, validate)

[2 3 4 5 6 7 8 9] [0 1]
[1 3 4 5 6 7 8 9] [0 2]
...
[0 1 2 3 4 5 6 8] [7 9]
[0 1 2 3 4 5 6 7] [8 9]

ShuffleSplit
The sklearn.model_selection.ShuffleSplit object creates independent splits with
potentially overlapping validation sets, as shown in the following code:

ss = ShuffleSplit(n_splits=3, test_size=2, random_state=42)
for train, validate in ss.split(data):
 print(train, validate)
[4 9 1 6 7 3 0 5] [2 8]
[1 2 9 8 0 6 7 4] [3 5]
[8 4 5 1 0 6 9 7] [2 3]

Parameter tuning with scikit-learn
Model selection typically involves repeated cross-validation of the out-of-sample
performance of models using different algorithms (such as linear regression and random
forest) or different configurations. Different configurations may involve changes to
hyperparameters or the inclusion or exclusion of different variables.

The Machine Learning Process Chapter 6

[171]

The yellowbricks library extends the sklearn API to generate diagnostic visualization
tools to facilitate the model-selection process. These tools can be used to investigate
relationships among features, analyze classification or regression errors, monitor cluster
algorithm performance, inspect the characteristics of text data, and help with model
selection. We will demonstrate validation and learning curves that provide valuable
information during the parameter-tuning phase—see the
machine_learning_workflow.ipynb notebook for implementation details.

Validation curves with yellowbricks
Validation curves (see the left-hand panel in the following graph) visualize the impact of a
single hyperparameter on a model's cross-validation performance. This is useful to
determine whether the model underfits or overfits the given dataset.

In our example of the KNeighborsRegressor that only has a single hyperparameter, we can
clearly see that the model underfits for values of k above 20, where the validation error
drops as we reduce the number of neighbors, thereby making our model more complex,
because it makes predictions for more distinct groups of neighbors or areas in the feature
space. For values below 20, the model begins to overfit as training and validation errors
diverge and average out-of-sample performance quickly deteriorates, as shown in the
following graph:

Learning curves
The learning curve (see the right-hand panel of the preceding chart for our house price
regression example) helps determine whether a model's cross-validation performance
would benefit from additional data and whether prediction errors are more driven by bias
or by variance.

The Machine Learning Process Chapter 6

[172]

If training and cross-validation performance converges, then more data is unlikely to
improve the performance. At this point, it is important to evaluate whether the model
performance meets expectations, determined by a human benchmark. If this is not the case,
then you should modify the model's hyperparameter settings to better capture the
relationship between the features and the outcome, or choose a different algorithm with a
higher capacity to capture complexity.

In addition, the variation of train and test errors shown by the shaded confidence intervals
provide clues about the bias and variance sources of the prediction error. Variability
around the cross-validation error is evidence of variance, whereas variability for the
training set suggests bias, depending on the size of the training error.

In our example, the cross-validation performance has continued to drop, but the
incremental improvements have shrunk and the errors have plateaued, so there are
unlikely to be many benefits from a larger training set. On the other hand, the data is
showing substantial variance given the range of validation errors compared to that shown
for the training errors.

Parameter tuning using GridSearchCV and pipeline
Since hyperparameter tuning is a key ingredient of the machine learning workflow, there
are tools to automate this process. The sklearn library includes a GridSearchCV interface
that cross-validates all combinations of parameters in parallel, captures the result, and
automatically trains the model using the parameter setting that performed best during
cross-validation on the full dataset.

In practice, the training and validation sets often require some processing prior to cross-
validation. Scikit-learn offers the Pipeline to also automate any requisite feature-
processing steps in the automated hyperparameter tuning facilitated by GridSearchCV.

You can look at the implementation examples in the included
machine_learning_workflow.ipynb notebook to see these tools in action.

Challenges with cross-validation in finance
A key assumption for the cross-validation methods discussed so far is the independent and
identical (iid) distribution of the samples available for training.

The Machine Learning Process Chapter 6

[173]

For financial data, this is often not the case. On the contrary, financial data is neither
independently nor identically distributed because of serial correlation and time-varying
standard deviation, also known as heteroskedasticity (see the next two chapters for more
details). The TimeSeriesSplit in the sklearn.model_selection module aims to
address the linear order of time-series data.

Time series cross-validation with sklearn
The time series nature of the data implies that cross-validation produces a situation where
data from the future will be used to predict data from the past. This is unrealistic at best
and data snooping at worst, to the extent that future data reflects past events.

To address time dependency, the sklearn.model_selection.TimeSeriesSplit object
implements a walk-forward test with an expanding training set, where subsequent training
sets are supersets of past training sets, as shown in the following code:

tscv = TimeSeriesSplit(n_splits=5)
for train, validate in tscv.split(data):
 print(train, validate)

[0 1 2 3 4] [5]
[0 1 2 3 4 5] [6]
[0 1 2 3 4 5 6] [7]
[0 1 2 3 4 5 6 7] [8]
[0 1 2 3 4 5 6 7 8] [9]

You can use the max_train_size parameter to implement walk-forward cross-validation,
where the size of the training set remains constant over time, similar to how zipline tests
a trading algorithm. Scikit-learn facilitates the design of custom cross-validation methods
using subclassing, which we will implement in the following chapters.

Purging, embargoing, and combinatorial CV
For financial data, labels are often derived from overlapping data points as returns are
computed from prices in multiple periods. In the context of trading strategies, the results of
a model's prediction, which may imply taking a position in an asset, may only be known
later, when this decision is evaluated—for example, when a position is closed out.

The Machine Learning Process Chapter 6

[174]

The resulting risks include the leaking of information from the test into the training set,
likely leading to an artificially inflated performance that needs to be addressed by ensuring
that all data is point-in-time—that is, truly available and known at the time it is used as the
input for a model. Several methods have been proposed by Marcos Lopez de Prado in
Advances in Financial Machine Learning to address these challenges of financial data for
cross-validation, as shown in the following list:

Purging: Eliminate training data points where the evaluation occurs after the
prediction of a point-in-time data point in the validation set to avoid look-ahead
bias.
Embargoing: Further eliminate training samples that follow a test period.
Combinatorial cross-validation: Walk-forward CV severely limits the historical
paths that can be tested. Instead, given T observations, compute all possible
train/test splits for N<T groups that each maintain their order, and purge and
embargo potentially overlapping groups. Then, train the model on all
combinations of N-k groups while testing the model on the remaining k groups.
The result is a much larger number of possible historical paths.

Prado's Advances in Financial Machine Learning contains sample code to implement these
approaches; the code is also available via the new library, timeseriescv.

Summary
In this chapter, we introduced the challenge of learning from data and looked at
supervised, unsupervised, and reinforcement models as the principal forms of learning that
we will study in this book to build algorithmic trading strategies. We discussed the need for
supervised learning algorithms to make assumptions about the functional relationships that
they attempt to learn in order to limit the search space while incurring an inductive bias
that may lead to excessive generalization errors.

We presented key aspects of the ML workflow, introduced the most common error metrics
for regression and classification models, explained the bias-variance trade-off, and
illustrated the various tools for managing the model selection process using cross-
validation.

In the following chapter, we will dive into linear models for regression and classification to
develop our first algorithmic trading strategies that use ML.

7
Linear Models

The family of linear models represents one of the most useful hypothesis classes. Many
learning algorithms that are widely applied in algorithmic trading rely on linear predictors
because they can be efficiently trained in many cases, they are relatively robust to noisy
financial data, and they have strong links to the theory of finance. Linear predictors are also
intuitive, easy to interpret, and often fit the data reasonably well or at least provide a good
baseline.

Linear regression has been known for over 200 years when Legendre and Gauss applied it
to astronomy and began to analyze its statistical properties. Numerous extensions have
since adapted the linear regression model and the baseline ordinary least squares (OLS)
method to learn its parameters:

Generalized linear models (GLM) expand the scope of applications by allowing
for response variables that imply an error distribution other than the normal
distribution. GLM include the probit or logistic models for categorical response
variables that appear in classification problems.
More robust estimation methods enable statistical inference where the data
violates baseline assumptions due to, for example, correlation over time or across
observations. This is often the case with panel data that contains repeated
observations on the same units such as historical returns on a universe of assets.
Shrinkage methods aim to improve the predictive performance of linear models.
They use a complexity penalty that biases the coefficients learned by the model
with the goal of reducing the model's variance and improving out-of-sample
predictive performance.

In practice, linear models are applied to regression and classification problems with
the goals of inference and prediction. Numerous asset pricing models that have been
developed by academic and industry researchers leverage linear regression. Applications
include the identification of significant factors that drive asset returns, for example, as a
basis for risk management, as well as the prediction of returns over various time horizons.
Classification problems, on the other hand, include directional price forecasts.

Linear Models Chapter 7

[176]

In this chapter, we will cover the following topics:

How linear regression works and which assumptions it makes
How to train and diagnose linear regression models
How to use linear regression to predict future returns
How use regularization to improve the predictive performance
How logistic regression works
How to convert a regression into a classification problem

For code examples, additional resources, and references, see the directory for this chapter in
the online GitHub repository.

Linear regression for inference and
prediction
As the name suggests, linear regression models assume that the output is the result of a
linear combination of the inputs. The model also assumes a random error that allows for
each observation to deviate from the expected linear relationship. The reasons that the
model does not perfectly describe the relationship between inputs and output in a
deterministic way include, for example, missing variables, measurement, or data collection
issues.

If we want to draw statistical conclusions about the true (but not observed) linear
relationship in the population based on the regression parameters estimated from the
sample, we need to add assumptions about the statistical nature of these errors. The
baseline regression model makes the strong assumption that the distribution of the errors is
identical across errors and that errors are independent of each other, that is, knowing one
error does not help to forecast the next error. The assumption of independent and
identically distributed (iid) errors implies that their covariance matrix is the identity
matrix multiplied by a constant representing the error variance.

These assumptions guarantee that the OLS method delivers estimates that are not only
unbiased but also efficient, that is, they have the lowest sampling error learning algorithms.
However, these assumptions are rarely met in practice. In finance, we often encounter
panel data with repeated observations on a given cross-section. The attempt to estimate the
systematic exposure of a universe of assets to a set of risk factors over time
typically surfaces correlation in the time or cross-sectional dimension, or both. Hence,
alternative learning algorithms have emerged that assume more error covariance matrices
that differ from multiples of the identity matrix.

Linear Models Chapter 7

[177]

On the other hand, methods that learn biased parameters for a linear model may yield
estimates with a lower variance and, hence, improve the predictive performance.
Shrinkage methods reduce the model complexity by applying regularization that adds a
penalty term to the linear objective function. The penalty is positively related to the
absolute size of the coefficients so that these are shrunk relative to the baseline case. Larger
coefficients imply a more complex model that reacts more strongly to variations in the
inputs. Properly calibrated, the penalty can limit the growth of the model's coefficients
beyond what an optimal bias-variance trade-off would suggest.

We will introduce the baseline cross-section and panel techniques for linear models and
important enhancements that produce accurate estimates when key assumptions are
violated. We will then illustrate these methods by estimating factor models that are
ubiquitous in the development of algorithmic trading strategies. Lastly, we will focus on
regularization methods.

The multiple linear regression model
We will introduce the model's specification and objective function, methods to learn its
parameters, statistical assumptions that allow for inference and diagnostics of these
assumptions, as well as extensions to adapt the model to situations where these
assumptions fail.

How to formulate the model
The multiple regression model defines a linear functional relationship between one
continuous outcome variable and p input variables that can be of any type but may require
preprocessing. Multivariate regression, in contrast, refers to the regression of multiple
outputs on multiple input variables.

In the population, the linear regression model has the following form for a single instance
of the output y, an input vector , and the error ε:

The interpretation of the coefficients is straightforward: the value of a coefficient is the
partial, average effect of the variable xi on the output, holding all other variables constant.

Linear Models Chapter 7

[178]

The model can also be written more compactly in matrix form. In this case, y is a vector of
N output observations, X is the design matrix with N rows of observations on the
p variables plus a column of 1s for the intercept, and is the vector containing the P = p+1
coefficients :

The model is linear in its p +1 parameters but can model non-linear relationships by
choosing or transforming variables accordingly, for example by including a polynomial
basis expansion or logarithmic terms. It can also use categorical variables with dummy
encoding, and interactions between variables by creating new inputs of the form xi . xj.

To complete the formulation of the model from a statistical point of view so that we can test
a hypothesis about the parameters, we need to make specific assumptions about the error
term. We'll do this after first introducing the alternative methods to learn the parameters.

How to train the model
There are several methods to learn the model parameters from the data: ordinary least
squares (OLS), maximum likelihood estimation (MLE), and stochastic gradient descent
(SGD).

Least squares
The least squares method is the original method to learn the parameters of the hyperplane
that best approximates the output from the input data. As the name suggests, the best
approximation minimizes the sum of the squared distances between the output value and
the hyperplane represented by the model.

The difference between the model's prediction and the actual outcome for a given data
point is the residual (whereas the deviation of the true model from the true output in the
population is called error). Hence, in formal terms, the least squares estimation
method chooses the coefficient vector to minimize the residual sum of squares (RSS):

Linear Models Chapter 7

[179]

Hence, the least-squares coefficients are computed as:

The optimal parameter vector that minimizes RSS results from setting the derivatives of the
preceding expression with respect to to zero. This produces a unique solution, assuming
X has full column rank, that is, the input variables are not linearly dependent, as follows:

When y and X have been de-meaned by subtracting their respective means, represents
the ratio of the covariance between the inputs and the outputs and the output variance

. There is also a geometric interpretation: the coefficients that minimize RSS ensure
that the vector of residuals is orthogonal to the subspace of spanned by the
columns of X, and the estimates are orthogonal projections into that subspace.

Maximum likelihood estimation
MLE is an important general method to estimate the parameters of a statistical model. It
relies on the likelihood function that computes how likely it is to observe the sample of
output values for a given set of both input data as a function of the model parameters. The
likelihood differs from probabilities in that it is not normalized to range from 0 to 1.

We can set up the likelihood function for the linear regression example by assuming a
distribution for the error term, such as the standard normal distribution:

.

This allows us to compute the conditional probability of observing a given output given
the corresponding input vector xi and the parameters, :

Linear Models Chapter 7

[180]

Assuming the output values are conditionally independent given the inputs, the likelihood
of the sample is proportional to the product of the conditional probabilities of the
individual output data points. Since it is easier to work with sums than with products, we
apply the logarithm to obtain the log-likelihood function:

The goal of MLE is to maximize the probability of the output sample that has in fact been
observed by choosing model parameters, taking the observed inputs as given. Hence, the
MLE parameter estimate results from maximizing the (log) likelihood function:

Due to the assumption of normal distribution, maximizing the log-likelihood function
produces the same parameter solution as least squares because the only expression that
depends on the parameters is squared residual in the exponent. For other distributional
assumptions and models, MLE will produce different results, and in many cases, least
squares is not applicable, as we will see later for logistic regression.

Gradient descent
Gradient descent is a general-purpose optimization algorithm that will find stationary
points of smooth functions. The solution will be a global optimum if the objective
function is convex. Variations of gradient descent are widely used in the training of
complex neural networks, but also to compute solutions for MLE problems.

The algorithm uses the gradient of the objective function that contains its partial derivatives
with respect to the parameters. These derivatives indicate how much the objective changes
for infinitesimal steps in the direction of the corresponding parameters. It turns out that the
maximal change of the function value results from a step in the direction of the gradient
itself.

Hence, when minimizing a function that describes, for example, the cost of a prediction
error, the algorithm computes the gradient for the current parameter values using the
training data and modifies each parameter according to the negative value of its
corresponding gradient component. As a result, the objective function will assume a lower
value and move the parameters move closer to the solution. The optimization stops when
the gradient becomes small, and the parameter values change very little.

Linear Models Chapter 7

[181]

The size of these steps is the learning rate, which is a critical parameter that may require
tuning; many implementations include the option for this learning rate to increase with the
number of iterations gradually. Depending on the size of the data, the algorithm may
iterate many times over the entire dataset. Each such iteration is called an epoch. The
number of epochs and the tolerance used to stop further iterations are hyperparameters
you can tune.

Stochastic gradient descent randomly selects a data point and computes the gradient for
this data point as opposed to an average over a larger sample to achieve a speedup. There
are also batch versions that use a certain number of data points for each step.

The Gauss—Markov theorem
To assess the statistical of the model and conduct inference, we need to make assumptions
about the residuals, that is, the properties of the unexplained part of the input. The
Gauss—Markov theorem (GMT) defines the assumptions required for OLS to produce
unbiased estimates of the model parameters , and when these estimates have the lowest
standard error among all linear models for cross-sectional data.

The baseline multiple regression model makes the following GMT assumptions:

In the population, linearity holds, where are1.
unknown but constant and is a random error
The data for the input variables are a random sample from the2.
population
No perfect collinearity—there are no exact linear relationships among the input3.
variables
The error has a conditional mean of zero given any of the inputs: 4.

Homoskedasticity, the error term has constant variance given the inputs: 5.

Linear Models Chapter 7

[182]

The fourth assumption implies that no missing variable exists that is correlated with any of
the input variables. Under the first four assumptions, the OLS method delivers unbiased
estimates: including an irrelevant variable does not bias the intercept and slope estimates,
but omitting a relevant variable will bias the OLS estimates. OLS is then also consistent: as
the sample size increases, the estimates converge to the true value as the standard errors
become arbitrary. The converse is unfortunately also true: if the conditional expectation of
the error is not zero because the model misses a relevant variable or the functional form is
wrong (that is, quadratic or log terms are missing), then all parameter estimates are biased.
If the error is correlated with any of the input variables then OLS is also not consistent, that
is, adding more data will not remove the bias.

If we add the fifth assumptions, then OLS also produces the best linear, unbiased estimates
(BLUE), where best means that the estimates have the lowest standard error among all
linear estimators. Hence, if the five assumptions hold and statistical inference is the goal,
then the OLS estimates is the way to go. If the goal, however, is to predict, then we will see
that other estimators exist that trade off some bias for a lower variance to achieve superior
predictive performance in many settings.

Now that we have introduced the basic OLS assumptions, we can take a look at inference in
small and large samples.

How to conduct statistical inference
Inference in the linear regression context aims to draw conclusions about the true
relationship in the population from the sample data. This includes tests of hypothesis
about the significance of the overall relationship or the values of particular coefficients, as
well as estimates of confidence intervals.

The key ingredient for statistical inference is a test statistic with a known distribution. We
can use it to assume that the null hypothesis is true and compute the probability of
observing the value for this statistic in the sample, familiar as the p-value. If the p-value
drops below a significance threshold (typically five percent) then we reject the hypothesis
because it makes the actual sample value very unlikely. At the same time, we accept that
the p-value reflects the probability that we are wrong in rejecting what is, in fact, a correct
hypothesis.

Linear Models Chapter 7

[183]

In addition to the five GMT assumptions, the classical linear model
assumes normality—the population error is normally distributed and independent of the
input variables. This assumption implies that the output variable is normally distributed,
conditional on the input variables. This strong assumption permits the derivation of the
exact distribution of the coefficients, which in turn implies exact distributions of the test
statistics required for similarly exact hypotheses tests in small samples. This assumption
often fails—asset returns, for instance, are not normally distributed—but, fortunately, the
methods used under normality are also approximately valid.

We have the following distributional characteristics and test statistics, approximately under
GMT assumptions 1–5, and exactly when normality holds:

The parameter estimates follow a multivariate normal distribution:
 .

Under GMT 1–5, the parameter estimates are already unbiased and we can get
an unbiased estimate of , the constant error variance, using

.
The t statistic for a hypothesis tests about an individual coefficient is

 and follows a t distribution with N-p-1 degrees of freedom
where is the j's element of the diagonal of .
The t distribution converges to the normal distribution and since the 97.5
quantile of the normal distribution is 1.96, a useful rule of thumb for a 95%
confidence interval around a parameter estimate is . An interval that
includes zero implies that we can't reject the null hypothesis that the true
parameter is zero and, hence, irrelevant for the model.
The F statistic allows for tests of restrictions on several parameters, including
whether the entire regression is significant. It measures the change (reduction) in
the RSS that results from additional variables.
Finally, the Lagrange Multiplier (LM) test is an alternative to the F test to restrict
multiple restrictions.

Linear Models Chapter 7

[184]

How to diagnose and remedy problems
Diagnostics validate the model assumptions and prevent wrong conclusions when
interpreting the result and conducting statistical inference. They include measures of
goodness of fit and various tests of the assumptions about the error term, including how
closely the residuals match a normal distribution. Furthermore, diagnostics test whether the
residual variance is indeed constant or exhibits heteroskedasticity, and if the errors are
conditionally uncorrelated or exhibit serial correlation, that is, if knowing one error helps to
predict consecutive errors.

In addition to the tests outlined as follows, it is always important to visually inspect the
residuals to detect whether there are systematic patterns because these indicate that the
model is missing one or more factors that drive the outcome.

Goodness of fit
Goodness-of-fit measures assess how well a model explains the variation in the outcome.
They help to assess the quality of model specification, for instance, to select among different
model designs. They differ in how they evaluate the fit. The measures discussed here
provide in-sample information; we will use out-of-sample testing and cross-validation
when we focus on predictive models in the next section.

Prominent goodness-of-fit measures include the (adjusted) R2 that should be maximized
and is based on the least-squares estimate:

R2 measures the share of the variation in the outcome data explained by the

model and is computed as , where TSS is the sum of squared
deviations of the outcome from its mean. It also corresponds to the squared
correlation coefficient between the actual outcome values and those estimated
(fitted) by the model. The goals is to maximize R2 but it never decreases as the
model adds more variables and, hence, encourages overfitting.

The adjusted R2 penalizes R2 for adding more variables; each additional variable
needs to reduce RSS significantly to produce better goodness of fit.

Linear Models Chapter 7

[185]

Alternatively, the Akaike (AIC) and the Bayesian Information Criterion (BIC) are to be
minimized and are based on the maximum-likelihood estimate:

, where is the value of the maximized likelihood
function, k is the number of parameters

 where N is the sample size

Both metrics penalize for complexity, with BIC imposing a higher penalty so that it might
underfit whereas AIC might overfit in relative terms. Conceptually, AIC aims at finding the
model that best describes an unknown data-generating process, whereas BIC tries to find
the best model among the set of candidates. In practice, both criteria can be used jointly to
guide model selection when the goal is in-sample fit; otherwise, cross-validation and
selection based on estimates of generalization error are preferable.

Heteroskedasticity
GMT assumption 5 requires the residual covariance to take the shape , that is, a
diagonal matrix with entries equal to the constant variance of the error
term. Heteroskedasticity occurs when the residual variance is not constant but differs
across observations. If the residual variance is positively correlated with an input variable,
that is, when errors are larger for input values that are far from their mean, then OLS
standard error estimates will be too low, and, consequently, the t-statistic will be inflated
leading to false discoveries of relationships where none actually exist.

Diagnostics starts with a visual inspection of the residuals. Systematic patterns in the
(supposedly random) residuals suggest statistical tests of the null hypothesis that errors are
homoscedastic against various alternatives. These tests include the Breusch—Pagan and
White tests.

There are several ways to correct OLS estimates for heteroskedasticity:

Robust standard errors (sometimes called white standard errors) take
heteroskedasticity into account when computing the error variance using a so-
called sandwich estimator.
Clustered standard errors assume that there are distinct groups in your data that
are homoskedastic but the error variance differs between groups. These groups
could be different asset classes or equities from different industries.

Linear Models Chapter 7

[186]

Several alternatives to OLS estimate the error covariance matrix using different
assumptions when . The following are available in statsmodels:

Weighted least squares (WLS): For heteroskedastic errors where the covariance
matrix has only diagonal entries as for OLS, but now the entries are allowed to
vary
Feasible generalized least squares (GLSAR), for autocorrelated errors that
follow an autoregressive AR (p) process (see the chapter on linear time series
models)
Generalized least squares (GLS) for arbitrary covariance matrix structure; yields
efficient and unbiased estimates in the presence of heteroskedasticity or serial
correlation

Serial correlation
Serial correlation means that consecutive residuals produced by linear regression
are correlated, which violates the fourth GMT assumption. Positive serial correlation
implies that the standard errors are underestimated and the t-statistics will be inflated,
leading to false discoveries if ignored. However, there are procedures to correct for serial
correlation when calculating standard errors.

The Durbin—Watson statistic diagnoses serial correlation. It tests the hypothesis that the
OLS residuals are not autocorrelated against the alternative that they follow an
autoregressive process (that we will explore in the next chapter). The test statistic ranges
from 0 to 4, and values near 2 indicate non-autocorrelation, lower values suggest positive,
and higher values indicate negative autocorrelation. The exact threshold values depend on
the number of parameters and observations and need to be looked up in tables.

Linear Models Chapter 7

[187]

Multicollinearity
Multicollinearity occurs when two or more independent variables are highly correlated.
This poses several challenges:

It is difficult to determine which factors influence the dependent variable
The individual p values can be misleading—a p-value can be high even if the
variable is important
The confidence intervals for the regression coefficients will be excessive, possibly
even including zero, making it impossible to determine the effect of an
independent variable on the outcome

There is no formal or theory-based solution that corrects for multicollinearity. Instead, try
to remove one or more of the correlated input variables, or increase the sample size.

How to run linear regression in practice
The accompanying notebook linear_regression_intro.ipynb illustrates a simple and
then a multiple linear regression, the latter using both OLS and gradient descent. For the
multiple regression, we generate two random input variables x1 and x2 that range from -50
to +50, and an outcome variable calculated as a linear combination of the inputs plus
random Gaussian noise to meet the normality assumption GMT 6:

OLS with statsmodels
We use statsmodels to estimate a multiple regression model that accurately reflects the
data generating process as follows:

from statsmodels.api import
X_ols = add_constant(X)
model = OLS(y, X_ols).fit()
model.summary()

Linear Models Chapter 7

[188]

This yields the following OLS Regression Results summary:

 Summary of OLS Regression Results

The upper part of the summary displays the dataset characteristics, namely the estimation
method, the number of observations and parameters, and indicates that standard error
estimates do not account for heteroskedasticity. The middle panel shows the coefficient
values that closely reflect the artificial data generating process. We can confirm that the
estimates displayed in the middle of the summary result can be obtained using the OLS
formula derived previously:

beta = np.linalg.inv(X_ols.T.dot(X_ols)).dot(X_ols.T.dot(y))
pd.Series(beta, index=X_ols.columns)

const 50.94
X_1 1.08
X_2 2.93

Linear Models Chapter 7

[189]

The following diagram illustrates the hyperplane fitted by the model to the randomly
generated data points:

Hyperplane

The upper right part of the panel displays the goodness-of-fit measures just discussed,
alongside the F-test that rejects the hypothesis that all coefficients are zero and irrelevant.
Similarly, the t-statistics indicate that intercept and both slope coefficients are,
unsurprisingly, highly significant.

The bottom part of the summary contains the residual diagnostics. The left panel displays
skew and kurtosis that are used to test the normality hypothesis. Both the Omnibus and the
Jarque—Bera test fails to reject the null hypothesis that the residuals are normally
distributed. The Durbin—Watson statistic tests for serial correlation in the residuals and
has a value near 2 which, given 2 parameters and 625 observations, fails to reject the
hypothesis of no serial correlation.

Lastly, the condition number provides evidence about multicollinearity: it is the ratio of the
square roots of the largest and the smallest eigenvalue of the design matrix that contains
the input data. A value above 30 suggests that the regression may have significant
multicollinearity.

statsmodels includes additional diagnostic tests that are linked in the notebook.

Linear Models Chapter 7

[190]

Stochastic gradient descent with sklearn
The sklearn library includes an SGDRegressor model in its linear_models module. To
learn the parameters for the same model using this method, we need to first standardize the
data because the gradient is sensitive to the scale. We use StandardScaler() for this
purpose that computes the mean and the standard deviation for each input variable during
the fit step, and then subtracts the mean and divides by the standard deviation during the
transform step that we can conveniently conduct in a single fit_transform() command:

scaler = StandardScaler()
X_ = scaler.fit_transform(X)

Then we instantiate the SGDRegressor using the default values except for a
random_state setting to facilitate replication:

sgd = SGDRegressor(loss='squared_loss', fit_intercept=True,
 shuffle=True, random_state=42, # shuffle training data
for better gradient estimates
 learning_rate='invscaling', # reduce learning rate
over time
 eta0=0.01, power_t=0.25) # parameters for
learning rate path

Now we can fit the sgd model, create the in-sample predictions for both the OLS and the
sgd models, and compute the root mean squared error for each:

sgd.fit(X=X_, y=y)
resids = pd.DataFrame({'sgd': y - sgd.predict(X_),
 'ols': y - model.predict(sm.add_constant(X))})
resids.pow(2).sum().div(len(y)).pow(.5)

ols 50.06
sgd 50.06

As expected, both models yield the same result. We will now take on a more ambitious
project using linear regression to estimate a multi-factor asset pricing model.

How to build a linear factor model
Algorithmic trading strategies use linear factor models to quantify the relationship
between the return of an asset and the sources of risk that represent the main drivers of
these returns. Each factor risk carries a premium, and the total asset return can be expected
to correspond to a weighted average of these risk premia.

Linear Models Chapter 7

[191]

There are several practical applications of factor models across the portfolio management
process from construction and asset selection to risk management and performance
evaluation. The importance of factor models continues to grow as common risk factors are
now tradeable:

A summary of the returns of many assets by a much smaller number of factors
reduces the amount of data required to estimate the covariance matrix when
optimizing a portfolio
An estimate of the exposure of an asset or a portfolio to these factors allows for
the management of the resultant risk, for instance by entering suitable hedges
when risk factors are themselves traded
A factor model also permits the assessment of the incremental signal content of
new alpha factors
A factor model can also help assess whether a manager's performance relative to
a benchmark is indeed due to skill in selecting assets and timing the market, or if
instead, the performance can be explained by portfolio tilts towards known
return drivers that can today be replicated as low-cost, passively managed funds
without incurring active management fees

The following examples apply to equities, but risk factors have been identified for all asset
classes (see references in the GitHub repository).

From the CAPM to the Fama—French five-factor
model
Risk factors have been a key ingredient to quantitative models since the Capital Asset
Pricing Model (CAPM) explained the expected returns of all N assets
using their respective exposure to a single factor, the expected excess return of the
overall market over the risk-free rate . The model takes the following linear form:

This differs from classic fundamental analysis a la Dodd and Graham where returns
depend on firm characteristics. The rationale is that, in the aggregate, investors cannot
eliminate this so-called systematic risk through diversification. Hence, in equilibrium, they
require compensation for holding an asset commensurate with its systematic risk. The
model implies that, given efficient markets where prices immediately reflect all public
information, there should be no superior risk-adjusted returns, that is, the value of
should be zero.

Linear Models Chapter 7

[192]

Empirical tests of the model use linear regression and have consistently failed, prompting a
debate whether the efficient markets or the single factor aspect of the joint hypothesis is to
blame. It turns out that both premises are probably wrong:

 Joseph Stiglitz earned the 2001 Nobel Prize in economics in part for showing that
markets are generally not perfectly efficient: if markets are efficient, there is no
value in collecting data because this information is already reflected in prices.
However, if there is no incentive to gather information, it is hard to see how it
should be already reflected in prices.
On the other hand, theoretical and empirical improvements on the CAPM
suggest that additional factors help explain some of the anomalies that consisted
in superior risk-adjusted returns that do not depend on overall market exposure,
such as higher returns for smaller firms.

Stephen Ross proposed the Arbitrage Pricing Theory (APT) in 1976 as an alternative that
allows for several risk factors while eschewing market efficiency. In contrast to the CAPM,
it assumes that opportunities for superior returns due to mispricing may exist but will
quickly be arbitraged away. The theory does not specify the factors, but research by the
author suggests that the most important are changes in inflation and industrial production,
as well as changes in risk premia or the term structure of interest rates.

Kenneth French and Eugene Fama (who won the 2013 Nobel Prize) identified additional
risk factors that depend on firm characteristics and are widely used today. In 1993, the
Fama—French three-factor model added the relative size and value of firms to the single
CAPM source of risk. In 2015, the five-factor model further expanded the set to include firm
profitability and level of investment that had been shown to be significant in the
intervening years. In addition, many factor models include a price momentum factor.

The Fama—French risk factors are computed as the return difference on diversified
portfolios with high or low values according to metrics that reflect a given risk factor. These
returns are obtained by sorting stocks according to these metrics and then going long stocks
above a certain percentile while shorting stocks below a certain percentile. The metrics
associated with the risk factors are defined as follows:

Size: Market Equity (ME)
Value: Book Value of Equity (BE) divided by ME
Operating Profitability (OP): Revenue minus cost of goods sold/assets
Investment: Investment/assets

There are also unsupervised learning techniques for a data-driven discovery of risk factors
using factors and principal component analysis that we will explore in Chapter 12,
Unsupervised Learning.

Linear Models Chapter 7

[193]

Obtaining the risk factors
Fama and French make updated risk factor and research portfolio data available through
their website, and you can use the pandas_datareader library to obtain the data. For this
application, refer to the fama_macbeth.ipynb notebook for additional detail.

In particular, we will be using the five Fama—French factors that result from sorting stocks
first into three size groups and then into two for each of the remaining three firm-specific
factors. Hence, the factors involve three sets of value-weighted portfolios formed as 3 x 2
sorts on size and book-to-market, size and operating profitability, and size and
investment. The risk factor values computed as the average returns of the portfolios (PF) as
outlined in the following table:

Concept Label Name Risk factor calculation
Size SMB Small minus big Nine small stock PF minus nine large stock PF

Value HML High minus low Two value PF minus two growth (with low
BE/ME value) PF

Profitability RMW Robust minus weak Two robust OP PF minus two weak OP PF

Investment CMA Conservative minus
aggressive

Two conservative investment portfolios minus
two aggressive investment portfolios

Market Rm-Rf Excess return on the
market

Value-weight return of all firms incorporated
in and listed on major US exchanges with
good data minus the one-month Treasury bill
rate

We will use returns at a monthly frequency that we obtain for the period 2010 – 2017 as
follows:

import pandas_datareader.data as web
ff_factor = 'F-F_Research_Data_5_Factors_2x3'
ff_factor_data = web.DataReader(ff_factor, 'famafrench', start='2010',
end='2017-12')[0]
ff_factor_data.info()

PeriodIndex: 96 entries, 2010-01 to 2017-12
Freq: M
Data columns (total 6 columns):
Mkt-RF 96 non-null float64
SMB 96 non-null float64
HML 96 non-null float64
RMW 96 non-null float64
CMA 96 non-null float64

Linear Models Chapter 7

[194]

RF 96 non-null float64

Fama and French also make available numerous portfolios that we can illustrate the
estimation of the factor exposures, as well as the value of the risk premia available in the
market for a given time period. We will use a panel of the 17 industry portfolios at a
monthly frequency. We will subtract the risk-free rate from the returns because the factor
model works with excess returns:

ff_portfolio = '17_Industry_Portfolios'
ff_portfolio_data = web.DataReader(ff_portfolio, 'famafrench',
start='2010', end='2017-12')[0]
ff_portfolio_data = ff_portfolio_data.sub(ff_factor_data.RF, axis=0)
ff_factor_data = ff_factor_data.drop('RF', axis=1)
ff_portfolio_data.info()

PeriodIndex: 96 entries, 2010-01 to 2017-12
Freq: M
Data columns (total 17 columns):
Food 96 non-null float64
Mines 96 non-null float64
Oil 96 non-null float64
...
Rtail 96 non-null float64
Finan 96 non-null float64
Other 96 non-null float64

We will now build a linear factor model based on this panel data using a method that
addresses the failure of some basic linear regression assumptions.

Fama—Macbeth regression
Given data on risk factors and portfolio returns, it is useful to estimate the portfolio's
exposure, that is, how much the risk factors drive portfolio returns, as well as how much
the exposure to a given factor is worth, that is, the what market's risk factor premium is.
The risk premium then permits to estimate the return for any portfolio provided the factor
exposure is known or can be assumed.

More formally, we will have i=1, ..., N asset or portfolio returns over t=1, ..., T periods and
each asset's excess period return will be denoted . The goals is to test whether the j=1, ...,
M factors explain the excess returns and the risk premium associated with each factor. In
our case, we have N=17 portfolios and M=5 factors, each with =96 periods of data.

Linear Models Chapter 7

[195]

Factor models are estimated for many stocks in a given period. Inference problems will
likely arise in such cross-sectional regressions because the fundamental assumptions of
classical linear regression may not hold. Potential violations include measurement errors,
covariation of residuals due to heteroskedasticity and serial correlation, and
multicollinearity.

To address the inference problem caused by the correlation of the residuals, Fama and
MacBeth proposed a two-step methodology for a cross-sectional regression of returns on
factors. The two-stage Fama—Macbeth regression is designed to estimate the premium
rewarded for the exposure to a particular risk factor by the market. The two stages consist
of:

First stage: N time-series regression, one for each asset or portfolio, of its excess
returns on the factors to estimate the factor loadings. In matrix form, for each
asset:

Second stage: T cross-sectional regression, one for each time period, to estimate
the risk premium. In matrix form, we obtain a vector of risk premia for each
period:

Now we can compute the factor risk premia as the time average and get t-statistic to assess
their individual significance, using the assumption that the risk premia estimates are

independent over time: .

If we had a very large and representative data sample on traded risk factors we could use
the sample mean as a risk premium estimate. However, we typically do not have a
sufficiently long history to and the margin of error around the sample mean could be quite
large. The Fama—Macbeth methodology leverages the covariance of the factors with other
assets to determine the factor premia. The second moment of asset returns is easier to
estimate than the first moment, and obtaining more granular data improves estimation
considerably, which is not true of mean estimation.

Linear Models Chapter 7

[196]

We can implement the first stage to obtain the 17 factor loading estimates as follows:

betas = []
for industry in ff_portfolio_data:
 step1 = OLS(endog=ff_portfolio_data[industry],
 exog=add_constant(ff_factor_data)).fit()
 betas.append(step1.params.drop('const'))

betas = pd.DataFrame(betas,
 columns=ff_factor_data.columns,
 index=ff_portfolio_data.columns)
betas.info()
Index: 17 entries, Food to Other
Data columns (total 5 columns):
Mkt-RF 17 non-null float64
SMB 17 non-null float64
HML 17 non-null float64
RMW 17 non-null float64
CMA 17 non-null float64

For the second stage, we run 96 regressions of the period returns for the cross section of
portfolios on the factor loadings:

lambdas = []
for period in ff_portfolio_data.index:
 step2 = OLS(endog=ff_portfolio_data.loc[period, betas.index],
 exog=betas).fit()
 lambdas.append(step2.params)

lambdas = pd.DataFrame(lambdas,
 index=ff_portfolio_data.index,
 columns=betas.columns.tolist())
lambdas.info()
PeriodIndex: 96 entries, 2010-01 to 2017-12
Freq: M
Data columns (total 5 columns):
Mkt-RF 96 non-null float64
SMB 96 non-null float64
HML 96 non-null float64
RMW 96 non-null float64
CMA 96 non-null float64

Linear Models Chapter 7

[197]

Finally, we compute the average for the 96 periods to obtain our factor risk premium
estimates:

lambdas.mean()
Mkt-RF 1.201304
SMB 0.190127
HML -1.306792
RMW -0.570817
CMA -0.522821

The linear_models library extends statsmodels with various models for panel data and
also implements the two-stage Fama—MacBeth procedure:

model = LinearFactorModel(portfolios=ff_portfolio_data,
 factors=ff_factor_data)
res = model.fit()

This provides us with the same result:

LinearFactorModel Estimation Summary

The accompanying notebook illustrates the use of categorical variables by using industry
dummies when estimating risk premia for a larger panel of individual stocks.

Linear Models Chapter 7

[198]

Shrinkage methods: regularization for linear
regression
The least squares methods to train a linear regression model will produce the best, linear,
and unbiased coefficient estimates when the Gauss—Markov assumptions are met.
Variations like GLS fare similarly well even when OLS assumptions about the error
covariance matrix are violated. However, there are estimators that produce biased
coefficients to reduce the variance to achieve a lower generalization error overall.

When a linear regression model contains many correlated variables, their coefficients will
be poorly determined because the effect of a large positive coefficient on the RSS can be
canceled by a similarly large negative coefficient on a correlated variable. Hence, the model
will have a tendency for high variance due to this wiggle room of the coefficients that
increases the risk that the model overfits to the sample.

How to hedge against overfitting
One popular technique to control overfitting is that of regularization, which involves the
addition of a penalty term to the error function to discourage the coefficients from reaching
large values. In other words, size constraints on the coefficients can alleviate the resultant
potentially negative impact on out-of-sample predictions. We will encounter regularization
methods for all models since overfitting is such a pervasive problem.

In this section, we will introduce shrinkage methods that address two motivations to
improve on the approaches to linear models discussed so far:

Prediction accuracy: The low bias but high variance of least squares estimates
suggests that the generalization error could be reduced by shrinking or setting
some coefficients to zero, thereby trading off a slightly higher bias for a reduction
in the variance of the model.
Interpretation: A large number of predictors may complicate the interpretation
or communication of the big picture of the results. It may be preferable to
sacrifice some detail to limit the model to a smaller subset of parameters with the
strongest effects.

Linear Models Chapter 7

[199]

Shrinkage models restrict the regression coefficients by imposing a penalty on their size.
These models achieve this goal by adding a term to the objective function so that the
coefficients of a shrinkage model minimize the RSS plus a penalty that is positively related
to the (absolute) size of the coefficients. The added penalty turns finding the linear
regression coefficients into a constrained minimization problem that, in general, takes the
following Lagrangian form:

The regularization parameter λ determines the size of the penalty effect, that is, the strength
of the regularization. As soon as λ is positive, the coefficients will differ from the
unconstrained least squared parameters, which implies a biased estimate. The
hyperparameter λ should be adaptively chosen using cross-validation to minimize an
estimate of expected prediction error.

Shrinkage models differ by how they calculate the penalty, that is, the functional form of S.
The most common versions are the ridge regression that uses the sum of the squared
coefficients, whereas the lasso model bases the penalty on the sum of the absolute values of
the coefficients.

How ridge regression works
The ridge regression shrinks the regression coefficients by adding a penalty to the objective
function that equals the sum of the squared coefficients, which in turn corresponds to the L2

norm of the coefficient vector:

Hence, the ridge coefficients are defined as:

Linear Models Chapter 7

[200]

The intercept has been excluded from the penalty to make the procedure independent of
the origin chosen for the output variable—otherwise, adding a constant to all output values
would change all slope parameters as opposed to a parallel shift.

It is important to standardize the inputs by subtracting from each input the corresponding
mean and dividing the result by the input's standard deviation because the ridge solution is
sensitive to the scale of the inputs. There is also a closed solution for the ridge estimator
that resembles the OLS case:

The solution adds the scaled identity matrix λI to XTX before inversion, which guarantees
that the problem is non-singular, even if XTX does not have full rank. This was one of the
motivations for using this estimator when it was originally introduced.

The ridge penalty results in proportional shrinkage of all parameters. In the case of
orthonormal inputs, the ridge estimates are just a scaled version of the least squares
estimates, that is:

Using the singular value decomposition (SVD) of the input matrix X, we can gain insight
into how the shrinkage affects inputs in the more common case where they are not
orthonormal. The SVD of a centered matrix represents the principal components of a matrix
(refer to Chapter 11, Gradient Boosting Machines, on unsupervised learning) that capture
uncorrelated directions in the column space of the data in descending order of variance.

Ridge regression shrinks coefficients on input variables that are associated with directions
in the data that have less variance more than input variables that correlate with directions
that exhibit more variance. Hence, the implicit assumption of ridge regression is that the
directions in the data that vary the most will be most influential or most reliable when
predicting the output.

Linear Models Chapter 7

[201]

How lasso regression works
The lasso, known as basis pursuit in signal processing, also shrinks the coefficients by
adding a penalty to the sum of squares of the residuals, but the lasso penalty has a slightly
different effect. The lasso penalty is the sum of the absolute values of the coefficient vector,
which corresponds to its L1 norm. Hence, the lasso estimate is defined by:

Similarly to ridge regression, the inputs need to be standardized. The lasso penalty makes
the solution nonlinear, and there is no closed-form expression for the coefficients as in ridge
regression. Instead, the lasso solution is a quadratic programming problem and there are
available efficient algorithms that compute the entire path of coefficients that result for
different values of λ with the same computational cost as for ridge regression.

The lasso penalty had the effect of gradually reducing some coefficients to zero as the
regularization increases. For this reason, the lasso can be used for the continuous selection
of a subset of features.

How to use linear regression to predict
returns
The notebook linear_regression.ipynb contains examples for the prediction of stock
prices using OLS with statsmodels and sklearn, as well as ridge and lasso models. It is
designed to run as a notebook on the Quantopian research platform and relies on the
factor_library introduced in Chapter 4, Alpha Factors Research.

Prepare the data
We need to select a universe of equities and a time horizon, build and transform alpha
factors that we will use as features, calculate forward returns that we aim to predict, and
potentially clean our data.

Linear Models Chapter 7

[202]

Universe creation and time horizon
We will use equity data for the years 2014 and 2015 from a custom Q100US universe that
uses built-in filters, factors, and classifiers to select the 100 stocks with the highest average
dollar volume of the last 200 trading days filtered by additional default criteria (see
Quantopian docs linked on GitHub for detail). The universe dynamically updates based on
the filter criteria so that, while there are 100 stocks at any given point, there may be more
than 100 distinct equities in the sample:

def Q100US():
 return filters.make_us_equity_universe(
 target_size=100,
 rankby=factors.AverageDollarVolume(window_length=200),
 mask=filters.default_us_equity_universe_mask(),
 groupby=classifiers.fundamentals.Sector(),
 max_group_weight=0.3,
 smoothing_func=lambda f: f.downsample('month_start'),
)

Target return computation
We will test predictions for various lookahead periods to identify the best holding periods
that generate the best predictability, measured by the information coefficient. More
specifically, we compute returns for 1, 5, 10, and 20 days using the built-in Returns
function, resulting in over 50,000 observations for the universe of 100 stocks over two years
(that include approximately 252 trading days each):

lookahead = [1, 5, 10, 20]
returns = run_pipeline(Pipeline({'Returns{}D'.format(i):
Returns(inputs=[USEquityPricing.close],
 window_length=i+1, mask=UNIVERSE)
for i in lookahead},
 screen=UNIVERSE),
 start_date=START,
 end_date=END)
return_cols = ['Returns{}D'.format(i) for i in lookahead]
returns.info()

MultiIndex: 50362 entries, (2014-01-02 00:00:00+00:00, Equity(24 [AAPL]))
to (2015-12-31 00:00:00+00:00, Equity(47208 [GPRO]))
Data columns (total 4 columns):
Returns10D 50362 non-null float64
Returns1D 50362 non-null float64
Returns20D 50360 non-null float64
Returns5D 50362 non-null float64

Linear Models Chapter 7

[203]

Alpha factor selection and transformation
We will use over 50 features that cover a broad range of factors based on market,
fundamental, and alternative data. The notebook also includes custom transformations to
convert fundamental data that is typically available in quarterly reporting frequency to
rolling annual totals or averages to avoid excessive season fluctuations.

Once the factors have been computed through the various pipelines outlined in Chapter 4,
Alpha Factors Research, we combine them using pd.concat(), assign index names, and
create a categorical variable that identifies the asset for each data point:

data = pd.concat([returns, value_factors, momentum_factors,
 quality_factors, payout_factors, growth_factors,
 efficiency_factors, risk_factors], axis=1).sortlevel()
data.index.names = ['date', 'asset']
data['stock'] = data.index.get_level_values('asset').map(lambda x:
x.asset_name)

Data cleaning – missing data
In a next step, we remove rows and columns that lack more than 20 percent of the
observations, resulting in a loss of six percent of the observations and three columns:

rows_before, cols_before = data.shape
data = (data
 .dropna(axis=1, thresh=int(len(data) * .8))
 .dropna(thresh=int(len(data.columns) * .8)))
data = data.fillna(data.median())
rows_after, cols_after = data.shape
print('{:,d} rows and {:,d} columns dropped'.format(rows_before -
rows_after, cols_before - cols_after))
2,985 rows and 3 columns dropped

At this point, we have 51 features and the categorical identifier of the stock:

data.sort_index(1).info()

MultiIndex: 47377 entries, (2014-01-02, Equity(24 [AAPL])) to (2015-12-
 31, Equity(47208 [GPRO]))
Data columns (total 52 columns):
AssetToEquityRatio 47377 non-null float64
AssetTurnover 47377 non-null float64
CFO To Assets 47377 non-null float64
...
WorkingCapitalToAssets 47377 non-null float64
WorkingCapitalToSales 47377 non-null float64

Linear Models Chapter 7

[204]

stock 47377 non-null object
dtypes: float64(51), object(1)

Data exploration
For linear regression models, it is important to explore the correlation among the features to
identify multicollinearity issues, and to check the correlation between the features and the
target. The notebook contains a seaborn clustermap that shows the hierarchical structure of
the feature correlation matrix. It identifies a small number of highly correlated clusters.

Dummy encoding of categorical variables
We need to convert the categorical stock variable into a numeric format so that the linear
regression can process it. For this purpose, we use dummy encoding that creates individual
columns for each category level and flags the presence of this level in the original
categorical column with an entry of 1, and 0 otherwise. The pandas function
get_dummies() automates dummy encoding. It detects and properly converts columns of
type objects as illustrated next. If you need dummy variables for columns containing
integers, for instance, you can identify them using the keyword columns:

df = pd.DataFrame({'categories': ['A','B', 'C']})

 categories
0 A
1 B
2 C

pd.get_dummies(df)

 categories_A categories_B categories_C
0 1 0 0
1 0 1 0
2 0 0 1

Linear Models Chapter 7

[205]

When converting all categories to dummy variables and estimating the model with an
intercept (as you typically would), you inadvertently create multicollinearity: the matrix
now contains redundant information and no longer has full rank, that is, becomes singular.
It is simple to avoid this by removing one of the new indicator columns. The coefficient on
the missing category level will now be captured by the intercept (which is always 1 when
every other category dummy is 0). Use the drop_first keyword to correct the dummy
variables accordingly:

pd.get_dummies(df, drop_first=True)

 categories_B categories_C
0 0 0
1 1 0
2 0 1

Applied to our combined features and returns, we obtain 181 columns because there are
more than 100 stocks as the universe definition automatically updates the stock selection:

X = pd.get_dummies(data.drop(return_cols, axis=1), drop_first=True)
X.info()

MultiIndex: 47377 entries, (2014-01-02 00:00:00+00:00, Equity(24 [AAPL]))
to (2015-12-31 00:00:00+00:00, Equity(47208 [GPRO]))
Columns: 181 entries, DividendYield to stock_YELP INC
dtypes: float64(182)
memory usage: 66.1+ MB

Creating forward returns
The goal is to predict returns over a given holding period. Hence, we need to align the
features with return values with the corresponding return data point 1, 5, 10, or 20 days
into the future for each equity. We achieve this by combining the pandas .groupby()
method with the .shift() method as follows:

y = data.loc[:, return_cols]
shifted_y = []
for col in y.columns:
 t = int(re.search(r'\d+', col).group(0))
shifted_y.append(y.groupby(level='asset')['Returns{}D'.format(t)].shift(-
t).to_frame(col))
y = pd.concat(shifted_y, axis=1)
y.info()

MultiIndex: 47377 entries, (2014-01-02, Equity(24 [AAPL])) to (2015-12-31,
Equity(47208 [GPRO]))

Linear Models Chapter 7

[206]

Data columns (total 4 columns):
Returns1D 47242 non-null float64
Returns5D 46706 non-null float64
Returns10D 46036 non-null float64
Returns20D 44696 non-null float64
dtypes: float64(4)

There are now different numbers of observations for each return series as the forward shift
has created missing values at the tail end for each equity.

Linear OLS regression using statsmodels
We can estimate a linear regression model using OLS with statsmodels as demonstrated
previously. We select a forward return, for example for a 10-day holding period, remove
outliers below the 2.5% and above the 97.5% percentiles, and fit the model accordingly:

target = 'Returns10D'
model_data = pd.concat([y[[target]], X], axis=1).dropna()
model_data =
model_data[model_data[target].between(model_data[target].quantile(.025),
model_data[target].quantile(.975))]

model = OLS(endog=model_data[target], exog=model_data.drop(target, axis=1))
trained_model = model.fit()
trained_model.summary()

Diagnostic statistics
The summary is available in the notebook to save some space due to the large number of
variables. The diagnostic statistics show that, given the high p-value on the Jarque—Bera
statistic, the hypothesis that the residuals are normally distributed cannot be rejected.

However, the Durbin—Watson statistic is low at 1.5 so we can reject the null hypothesis of
no autocorrelation comfortably at the 5% level. Hence, the standard errors are likely
positively correlated. If our goal were to understand which factors are significantly
associated with forward returns, we would need to rerun the regression using robust
standard errors (a parameter in statsmodels .fit() method), or use a different method
altogether such as a panel model that allows for more complex error covariance.

Linear Models Chapter 7

[207]

Linear OLS regression using sklearn
Since sklearn is tailored towards prediction, we will evaluate the linear regression model
based on its predictive performance using cross-validation.

Custom time series cross-validation
 Our data consists of grouped time series data that requires a custom cross-validation
function to provide the train and test indices that ensure that the test data immediately
follows the training data for each equity and we do not inadvertently create a look-ahead
bias or leakage.

We can achieve this using the following function that returns a generator yielding pairs of
train and test dates. The set of train dates that ensure a minimum length of the training
periods. The number of pairs depends on the parameter nfolds. The distinct test periods
do not overlap and are located at the end of the period available in the data. After a test
period is used, it becomes part of the training data that grow in size accordingly:

def time_series_split(d=model_data, nfolds=5, min_train=21):
 """Generate train/test dates for nfolds
 with at least min_train train obs
 """
 train_dates = d[:min_train].tolist()
 n = int(len(dates)/(nfolds + 1)) + 1
 test_folds = [d[i:i + n] for i in range(min_train, len(d), n)]
 for test_dates in test_folds:
 if len(train_dates) > min_train:
 yield train_dates, test_dates
 train_dates.extend(test_dates)

Select features and target
We need to select the appropriate return series (we will again use a 10-day holding period)
and remove outliers. We will also convert returns to log returns as follows:

target = 'Returns10D'
outliers = .01
model_data = pd.concat([y[[target]], X],
axis=1).dropna().reset_index('asset', drop=True)
model_data =
model_data[model_data[target].between(*model_data[target].quantile([outlier
s, 1-outliers]).values)]

model_data[target] = np.log1p(model_data[target])

Linear Models Chapter 7

[208]

features = model_data.drop(target, axis=1).columns
dates = model_data.index.unique()

DatetimeIndex: 45114 entries, 2014-01-02 to 2015-12-16
Columns: 183 entries, Returns10D to stock_YELP INC
dtypes: float64(183)

Cross-validating the model
We will use 250 folds to generally predict about 2 days of forward returns following the
historical training data that will gradually increase in length. Each iteration obtains the
appropriate training and test dates from our custom cross-validation function, selects the
corresponding features and targets, and then trains and predicts accordingly. We capture
the root mean squared error as well as the Spearman rank correlation between actual and
predicted values:

nfolds = 250
lr = LinearRegression()

test_results, result_idx, preds = [], [], pd.DataFrame()
for train_dates, test_dates in time_series_split(dates, nfolds=nfolds):
 X_train = model_data.loc[idx[train_dates], features]
 y_train = model_data.loc[idx[train_dates], target]
 lr.fit(X=X_train, y=y_train)

 X_test = model_data.loc[idx[test_dates], features]
 y_test = model_data.loc[idx[test_dates], target]
 y_pred = lr.predict(X_test)

 rmse = np.sqrt(mean_squared_error(y_pred=y_pred, y_true=y_test))
 ic, pval = spearmanr(y_pred, y_test)

 test_results.append([rmse, ic, pval])
 preds =
preds.append(y_test.to_frame('actuals').assign(predicted=y_pred))
 result_idx.append(train_dates[-1])

Linear Models Chapter 7

[209]

Test results – information coefficient and RMSE
We have captured the test predictions from the 250 folds and can compute both the overall
and a 21-day rolling average:

fig, axes = plt.subplots(nrows=2)
rolling_result = test_result.rolling(21).mean()
rolling_result[['ic', 'pval']].plot(ax=axes[0], title='Information
Coefficient')
axes[0].axhline(test_result.ic.mean(), lw=1, ls='--', color='k')
rolling_result[['rmse']].plot(ax=axes[1], title='Root Mean Squared Error')
axes[1].axhline(test_result.rmse.mean(), lw=1, ls='--', color='k')

We obtain the following chart that highlights the negative correlation of IC and RMSE and
their respective values:

Chart highlighting the negative correlation of IC and RMSE

Linear Models Chapter 7

[210]

For the entire period, we see that the Information Coefficient measured by the rank
correlation of actual and predicted returns is weakly positive and statistically significant:

Ridge regression using sklearn
For the ridge regression, we need to tune the regularization parameter with the keyword
alpha that corresponds to the λ we used previously. We will try 21 values from 10-5 to 105

in logarithmic steps.

Linear Models Chapter 7

[211]

The scale sensitivity of the ridge penalty requires us to standardize the inputs using the
StandardScaler. Note that we always learn the mean and the standard deviation from
the training set using the .fit_transform() method and then apply these learned
parameters to the test set using the .transform() method.

Tuning the regularization parameters using cross-
validation
We then proceed to cross-validate the hyperparameter values again using 250 folds as
follows:

nfolds = 250
alphas = np.logspace(-5, 5, 21)
scaler = StandardScaler()

ridge_result, ridge_coeffs = pd.DataFrame(), pd.DataFrame()
for i, alpha in enumerate(alphas):
 coeffs, test_results = [], []
 lr_ridge = Ridge(alpha=alpha)
 for train_dates, test_dates in time_series_split(dates, nfolds=nfolds):
 X_train = model_data.loc[idx[train_dates], features]
 y_train = model_data.loc[idx[train_dates], target]
 lr_ridge.fit(X=scaler.fit_transform(X_train), y=y_train)
 coeffs.append(lr_ridge.coef_)

 X_test = model_data.loc[idx[test_dates], features]
 y_test = model_data.loc[idx[test_dates], target]
 y_pred = lr_ridge.predict(scaler.transform(X_test))

 rmse = np.sqrt(mean_squared_error(y_pred=y_pred, y_true=y_test))
 ic, pval = spearmanr(y_pred, y_test)

 test_results.append([train_dates[-1], rmse, ic, pval, alpha])
 test_results = pd.DataFrame(test_results, columns=['date', 'rmse',
'ic', 'pval', 'alpha'])
 ridge_result = ridge_result.append(test_results)
 ridge_coeffs[alpha] = np.mean(coeffs, axis=0)

Linear Models Chapter 7

[212]

Cross-validation results and ridge coefficient paths
We can now plot the information coefficient obtained for each hyperparameter value and
also visualize how the coefficient values evolve as the regularization increases. The results
show that we get the highest IC value for a value of λ=10. For this level of regularization,
the right-hand panel reveals that the coefficients have been already significantly shrunk
compared to the (almost) unconstrained model with λ=10-5:

Cross-validation results and ridge coefficient paths

Top 10 coefficients
The standardization of the coefficients allows us to draw conclusions about their relative
importance by comparing their absolute magnitude. The 10 most relevant coefficients are:

Linear Models Chapter 7

[213]

Top 10 coefficients

Lasso regression using sklearn
The lasso implementation looks very similar to the ridge model we just ran. The main
difference is that lasso needs to arrive at a solution using iterative coordinate descent
whereas ridge can rely on a closed-form solution:

nfolds = 250
alphas = np.logspace(-8, -2, 13)
scaler = StandardScaler()

lasso_results, lasso_coeffs = pd.DataFrame(), pd.DataFrame()
for i, alpha in enumerate(alphas):
 coeffs, test_results = [], []
 lr_lasso = Lasso(alpha=alpha)
 for i, (train_dates, test_dates) in enumerate(time_series_split(dates,
nfolds=nfolds)):
 X_train = model_data.loc[idx[train_dates], features]
 y_train = model_data.loc[idx[train_dates], target]
 lr_lasso.fit(X=scaler.fit_transform(X_train), y=y_train)

 X_test = model_data.loc[idx[test_dates], features]
 y_test = model_data.loc[idx[test_dates], target]
 y_pred = lr_lasso.predict(scaler.transform(X_test))

Linear Models Chapter 7

[214]

 rmse = np.sqrt(mean_squared_error(y_pred=y_pred, y_true=y_test))
 ic, pval = spearmanr(y_pred, y_test)

 coeffs.append(lr_lasso.coef_)
 test_results.append([train_dates[-1], rmse, ic, pval, alpha])
 test_results = pd.DataFrame(test_results, columns=['date', 'rmse',
'ic', 'pval', 'alpha'])
 lasso_results = lasso_results.append(test_results)
 lasso_coeffs[alpha] = np.mean(coeffs, axis=0)

Cross-validated information coefficient and Lasso Path
As before, we can plot the average information coefficient for all test sets used during cross-
validation. We see again that regularization improves the IC over the unconstrained model,
delivering the best out-of-sample result at a level of λ=10-5. The optimal regularization value
is quite different from ridge regression because the penalty consists of the sum of the
absolute, not the squared values of the relatively small coefficient values. We can also see
that for this regularization level, the coefficients have been similarly shrunk, as in the ridge
regression case:

Cross-validated information coefficient and Lasso Path

Linear Models Chapter 7

[215]

In sum, ridge and lasso will produce similar results. Ridge often computes faster, but lasso
also yields continuous features subset selection by gradually reducing coefficients to zero,
hence eliminating features.

Linear classification
The linear regression model discussed so far assumes a quantitative response variable. In
this section, we will focus on approaches to modeling qualitative output variables for
inference and prediction, a process that is known as classification and that occurs even
more frequently than regression in practice.

Predicting a qualitative response for a data point is called classifying that observation
because it involves assigning the observation to a category, or class. In practice,
classification methods often predict probabilities for each of the categories of a qualitative
variable and then use this probability to decide on the proper classification.

We could approach the classification problem ignoring the fact that the output variable
assumes discrete values, and apply the linear regression model to try to predict a
categorical output using multiple input variables. However, it is easy to construct examples
where this method performs very poorly. Furthermore, it doesn't make intuitive sense for
the model to produce values larger than 1 or smaller than 0 when we know that y ∈ [0, 1].

There are many different classification techniques, or classifiers, that are available to predict
a qualitative response. In this section, we will introduce the widely used logistic regression
which is closely related to linear regression. We will address more complex methods in the
following chapters, on generalized additive models that include decision trees and random
forests, as well as gradient boosting machines and neural networks.

The logistic regression model
The logistic regression model arises from the desire to model the probabilities of the output
classes given a function that is linear in x, just like the linear regression model, while at the
same time ensuring that they sum to one and remain in the [0, 1] as we would expect from
probabilities.

In this section, we introduce the objective and functional form of the logistic regression
model and describe the training method. We then illustrate how to use logistic regression
for statistical inference with macro data using statsmodels, and how to predict price
movements using the regularized logistic regression implemented by sklearn.

Linear Models Chapter 7

[216]

Objective function
For illustration, we'll use the output variable y that takes on the value 1 if a stock return is
positive over a given time horizon d, and 0 otherwise:

We could easily extend y to three categories, where 0 and 2 reflect negative and positive
price moves beyond a certain threshold, and 1 otherwise. Rather than modeling the output
variable y, however, logistic regression models the probability that y belongs to either of
the categories given a vector of alpha factors or features . In other words, the logistic
regression models the probability that the stock price goes up, conditional on the values of
the variables included in the model:

The logistic function
To prevent the model from producing values outside the [0, 1] interval, we must model p(x)
using a function that only gives outputs between 0 and 1 over the entire domain of x. The
logistic function meets this requirement and always produces an S-shaped curve (see
notebook examples), and so, regardless of the value of X, we will obtain a sensible
prediction:

Here, the vector x includes a 1 for the intercept captured by the first component of , . We
can transform this expression to isolate the part that looks like a linear regression to arrive
at:

Linear Models Chapter 7

[217]

The quantity p(x)/[1−p(x)] is called the odds, an alternative way to express probabilities that
may be familiar from gambling, and can take on any value odds between 0 and ∞, where
low values also imply low probabilities and high values imply high probabilities.

The logit is also called log-odds (since it is the logarithm of the odds). Hence, the
logistic regression represents a logit that is linear in x and looks a lot like the preceding
linear regression.

Maximum likelihood estimation
The coefficient vector must be estimated using the available training data. Although we
could use (non-linear) least squares to fit the logistic regression model, the more general
method of maximum likelihood is preferred, since it has better statistical properties. As we
have just discussed, the basic intuition behind using maximum likelihood to fit a logistic
regression model is to seek estimates for such that the predicted probability
corresponds as closely as possible to the actual outcome. In other words, we try to find
such that these estimates yield a number close to 1 for all cases where the stock price went
up, and a number close to 0 otherwise. More formally, we are seeking to maximize the
likelihood function:

It is easier to work with sums than with products, so let's take logs on both sides to get the
log-likelihood function and the corresponding definition of the logistic regression
coefficients:

Maximizing this equation by setting the derivatives of with respect to to zero yields p+1
so-called score equations that are nonlinear in the parameters that can be solved using
iterative numerical methods for the concave log-likelihood function.

Linear Models Chapter 7

[218]

How to conduct inference with statsmodels
We will illustrate how to use logistic regression with statsmodels based on a simple built-
in dataset containing quarterly US macro data from 1959 – 2009 (see the
notebook logistic_regression_macro_data.ipynb for detail).

The variables and their transformations are listed in the following table:

Variable Description Transformation
realgdp Real gross domestic product Annual Growth Rate
realcons Real personal consumption expenditures Annual Growth Rate
realinv Real gross private domestic investment Annual Growth Rate
realgovt Real federal expenditures and gross investment Annual Growth Rate
realdpi Real private disposable income Annual Growth Rate
m1 M1 nominal money stock Annual Growth Rate
tbilrate Monthly 3 treasury bill rate Level
unemp Seasonally adjusted unemployment rate (%) Level
infl Inflation rate Level
realint Real interest rate Level

To obtain a binary target variable, we compute the 20-quarter rolling average of the annual
growth rate of quarterly real GDP. We then assign 1 if current growth exceeds the moving
average and 0 otherwise. Finally, we shift the indicator variables to align next quarter's
outcome with the current quarter.

We use an intercept and convert the quarter values to dummy variables and train the
logistic regression model as follows:

import statsmodels.api as sm

data = pd.get_dummies(data.drop(drop_cols, axis=1), columns=['quarter'],
drop_first=True).dropna()
model = sm.Logit(data.target, sm.add_constant(data.drop('target', axis=1)))
result = model.fit()
result.summary()

This produces the following summary for our model with 198 observations and 13
variables, including intercept:

Linear Models Chapter 7

[219]

Logit Regression results

The summary indicates that the model has been trained using maximum likelihood and
provides the maximized value of the log-likelihood function at -67.9.

The LL-Null value of -136.42 is the result of the maximized log-likelihood function when
only an intercept is included. It forms the basis for the pseudo-R2 statistic and the Log-
Likelihood Ratio (LLR) test.

The pseudo-R2 statistic is a substitute for the familiar R2 available under least squares. It is
computed based on the ratio of the maximized log-likelihood function for the null
model m0 and the full model m1 as follows:

The values vary from 0 (when the model does not improve the likelihood) to 1 where the
model fits perfectly and the log-likelihood is maximized at 0. Consequently, higher values
indicate a better fit.

Linear Models Chapter 7

[220]

The LLR test generally compares a more restricted model and is computed as:

The null hypothesis is that the restricted model performs better but the low p-value
suggests that we can reject this hypothesis and prefer the full model over the null model.
This is similar to the F-test for linear regression (where we can also use the LLR test when
we estimate the model using MLE).

The z-statistic plays the same role as the t-statistic in the linear regression output and is
equally computed as the ratio of the coefficient estimate and its standard error. The p-
values also indicate the probability of observing the test statistic assuming the null
hypothesis H0 : β = 0 that the population coefficient is zero. We can reject this hypothesis for
the intercept, realcons, realinv, realgovt, realdpi, and unemp.

How to use logistic regression for prediction
The lasso L1 penalty and the ridge L2 penalty can both be used with logistic regression.
They have the same shrinkage effect as we have just discussed, and the lasso can again be
used for variable selection with any linear regression model.

Just as with linear regression, it is important to standardize the input variables as the
regularized models are scale sensitive. The regularization hyperparameter also requires
tuning using cross-validation as in the linear regression case.

How to predict price movements using sklearn
We continue the price prediction example but now we binarize the outcome variable so that
it takes on the value 1 whenever the 10-day return is positive and 0 otherwise; see the
notebook logistic_regression.ipynb in the sub directory stock_price_prediction:

target = 'Returns10D'
label = (y[target] > 0).astype(int).to_frame(target)

Linear Models Chapter 7

[221]

With this new categorical outcome variable, we can now train a logistic regression using the
default L2 regularization. For logistic regression, the regularization is formulated inversely
to linear regression: higher values for λ imply less regularization and vice versa. We
evaluate 11 parameter values using cross validation as follows:

nfolds = 250
Cs = np.logspace(-5, 5, 11)
scaler = StandardScaler()

logistic_results, logistic_coeffs = pd.DataFrame(), pd.DataFrame()
for C in Cs:
 coeffs = []
 log_reg = LogisticRegression(C=C)
 for i, (train_dates, test_dates) in enumerate(time_series_split(dates,
nfolds=nfolds)):
 X_train = model_data.loc[idx[train_dates], features]
 y_train = model_data.loc[idx[train_dates], target]
 log_reg.fit(X=scaler.fit_transform(X_train), y=y_train)

 X_test = model_data.loc[idx[test_dates], features]
 y_test = model_data.loc[idx[test_dates], target]
 y_pred = log_reg.predict_proba(scaler.transform(X_test))[:, 1]

 coeffs.append(log_reg.coef_.squeeze())
 logistic_results = (logistic_results
 .append(y_test
 .to_frame('actuals')
 .assign(predicted=y_pred, C=C)))
 logistic_coeffs[C] = np.mean(coeffs, axis=0)

We then use the roc_auc_score discussed in the previous chapter to compare the
predictive accuracy across the various regularization parameters:

auc_by_C = logistic_results.groupby('C').apply(lambda x:
roc_auc_score(y_true=x.actuals.astype(int),
y_score=x.predicted))

Linear Models Chapter 7

[222]

We can again plot the AUC result for the range of hyperparameter values alongside the
coefficient path that shows the improvements in predictive accuracy as the coefficients are a
bit shrunk at the optimal regularization value 102:

AUC and Logistic Ridge path

Summary
In this chapter, we introduced the first machine learning models using the important
baseline case of linear models for regression and classification. We explored the
formulation of the objective functions for both tasks, learned about various training
methods, and learned how to use the model for both inference and prediction.

Linear Models Chapter 7

[223]

We applied these new machine learning techniques to estimate linear factor models that are
very useful to manage risks, assess new alpha factors, and attribute performance. We also
applied linear regression and classification to accomplish the first predictive task of
predicting stock returns in absolute and directional terms.

In the next chapter, we will look at the important topic of linear time series models that are
designed to capture serial correlation patterns in the univariate and multivariate case. We
will also learn about new trading strategies as we explore pairs trading based on the
concept of cointegration that captures dynamic correlation among two stock price series.

8
Time Series Models

In the last chapter, we focused on linear models tailored to cross-sectional data where the
input data belongs to the same time period as the output they aim to explain or predict. In
this chapter, we will focus on time series data where observations differ by period, which
also creates a natural ordering. Our goal will be to identify historical patterns in data and
leverage these patterns to predict how the time series will behave in the future.

We already encountered panel data with both a cross-sectional and a time series dimension
in the last chapter and learned how the Fama-Macbeth regression estimates the value of
taking certain factor risks over time and across assets. However, the relationship between
returns across time is typically fairly low, so this procedure could largely ignore the time
dimension. The models in this chapter focus on time series models where past values
contain predictive signals about future developments. Time series models can also predict
features that are then used in cross-sectional models.

More specifically, in this chapter, we focus on models that extract signals from previously
observed data to predict future values for the same time series. The time dimension of
trading makes the application of time series models to market, fundamental, and
alternative data very popular. Time series data will become even more prevalent as an ever
broader array of connected devices collects regular measurements that may contain
predictive signals. Key applications include the prediction of asset returns, correlations or
covariances, or volatility.

We focus on linear time series models in this chapter as a baseline for non-linear models
like recurrent or convolutional neural networks that we apply to time series data in part 4
of this book. We being by introducing tools to diagnose time series characteristics,
including stationarity, and extract features that capture potential patterns. Then we
introduce univariate and multivariate time series models and apply them to forecast macro
data and volatility patterns. We conclude with the concept of cointegration and how to
apply it to develop a pairs trading strategy.

Time Series Models Chapter 8

[225]

In particular, we will cover the following topics:

How to use time series analysis to diagnose diagnostic statistics that inform the
modeling process
How to estimate and diagnose autoregressive and moving-average time series
models
How to build Autoregressive Conditional Heteroskedasticity (ARCH) models to
predict volatility
How to build vector autoregressive models
How to use cointegration for a pairs trading strategy

Analytical tools for diagnostics and feature
extraction
Time series data is a sequence of values separated by discrete time intervals that are
typically even-spaced (except for missing values). A time series is often modeled as a
stochastic process consisting of a collection of random variables, y(t1), ..., y(tT), with one
variable for each point in time, ti , i=1, ..., T. A univariate time series consists of a single
value, y, at each point in time, whereas a multivariate time series consists of several
observations that can be represented by a vector.

The number of periods, Δt= ti - tj, between distinct points in time, ti, tj, is called lag, with T-1
lags for each time series. Just as relationships between different variables at a given point in
time is key for cross-sectional models, relationships between data points separated by a
given lag are fundamental to analyzing and exploiting patterns in time series. For cross-
sectional models, we distinguished between input and output variables, or target and
predictors, with the labels y and x, respectively. In a time series context, the lagged values
of the outcome play the role of the input or x values in the cross-section context.

A time series is called white noise if it is a sequence of independent and identically-
distributed random variables, εt, with finite mean and variance. In particular, the series is
called a Gaussian white noise if the random variables are normally distributed with a mean
of zero and a constant variance of σ.

Time Series Models Chapter 8

[226]

A time series is linear if it can be written as a weighted sum of past disturbances, εt, that are
also called innovations, and are here assumed to represent white noise, and the mean of the
series, μ:

A key goal of time series analysis is to understand the dynamic behavior driven by the
coefficients, ai. The analysis of time series offers methods tailored to this type of data with
the goal of extracting useful patterns that, in turn, help us to build predictive models. We
will introduce the most important tools for this purpose, including the decomposition into
key systematic elements, the analysis of autocorrelation, and rolling window statistics such
as moving averages. Linear time series models often make certain assumptions about the
data, such as stationarity, and we will also introduce both the concept, diagnostic tools, and
typical transformations to achieve stationarity.

For most of the examples in this chapter, we work with data provided by the Federal
Reserve that you can access using the pandas datareader that we introduced in Chapter
2, Market and Fundamental Data. The code examples for this section are available in the
notebook tsa_and_arima notebook.

How to decompose time series patterns
Time series data typically contains a mix of various patterns that can be decomposed into
several components, each representing an underlying pattern category. In particular, time
series often consist of the systematic components trend, seasonality and cycles, and
unsystematic noise. These components can be combined in an additive, linear model, in
particular when fluctuations do not depend on the level of the series, or in a non-linear,
multiplicative model.

These components can be split up automatically. statsmodels includes a simple method
to split the time series into a trend, seasonal, and residual component using moving
averages. We can apply it to monthly data on industrial manufacturing production with
both a strong trend and seasonality component, as follows:

import statsmodels.tsa.api as tsa
industrial_production = web.DataReader('IPGMFN', 'fred', '1988',
'2017-12').squeeze()
components = tsa.seasonal_decompose(industrial_production,
model='additive')

Time Series Models Chapter 8

[227]

ts = (industrial_production.to_frame('Original')
 .assign(Trend=components.trend)
 .assign(Seasonality=components.seasonal)
 .assign(Residual=components.resid))
ts.plot(subplots=True, figsize=(14, 8));

The resulting charts show the additive components. The residual component would be the
focus of additional modeling, assuming that the trend and seasonality components are
more deterministic and amenable to simple extrapolation:

There are more sophisticated, model-based approaches that are included in the references
available on GitHub.

How to compute rolling window statistics
Given the sequential ordering of time series data, it is natural to compute familiar
descriptive statistics for periods of a given length to detect stability or changes in behavior
and obtain a smoothed representation that captures systematic aspects while filtering out
the noise.

Time Series Models Chapter 8

[228]

Rolling window statistics serve this process: they produce a new time series where each
data point represents a summary statistic computed for a certain period of the original data.
Moving averages are the most familiar example. The original data points can enter the
computation with equal weights, or using weights to, for example, emphasize more recent
data points. Exponential moving averages recursively compute weights that shrink or
decay, for data points further away from the present. The new data points are typically a
summary of all preceding data points, but they can also be computed from a surrounding
window.

The pandas library includes very flexible functionality to define various window types,
including rolling, exponentially weighted and expanding windows. In a second step, you
can apply computations to each data captured by a window. These computations include
built-in standard computations for individual series, such as the mean or the sum, the
correlation or covariance for several series, as well as user-defined functions. The moving
average and exponential smoothing examples in the following section make use of these
tools.

Moving averages and exponential smoothing
Early forecasting models included moving-average models with exponential
weights called exponential smoothing models. We will encounter moving averages again as
key building blocks for linear time series.

Forecasts that rely on exponential smoothing methods use weighted averages of past
observations, where the weights decay exponentially as the observations get older. Hence, a
more recent observation receives a higher associated weight. These methods are popular
for time series that do not have very complicated or abrupt patterns.

Exponential smoothing is a popular technique based on weighted averages of past
observations, with the weights decaying exponentially as the observations get older. In
other words, the more recent the observation, the higher the associated weight. This
framework generates reliable forecasts quickly and for a wide range of time series, which is
a great advantage and of major importance to applications in industry.

Time Series Models Chapter 8

[229]

How to measure autocorrelation
Autocorrelation (also called serial correlation) adapts the concept of correlation to the time
series context: just as the correlation coefficient measures the strength of a linear
relationship between two variables, the autocorrelation coefficient, ρk, measures the extent
of a linear relationship between time series values separated by a given lag, k:

Hence, we can calculate one autocorrelation coefficient for each of the T-1 lags in a time
series; T is the length of the series. The autocorrelation function (ACF) computes the
correlation coefficients as a function of the lag.

The autocorrelation for a lag larger than 1 (that is, between observations more than one
time step apart) reflects both the direct correlation between these observations and the
indirect influence of the intervening data points. The partial autocorrelation removes this
influence and only measures the linear dependence between data points at the given lag
distance. The partial autocorrelation function (PACF) provides all the correlations that
result once the effects of a correlation at shorter lags have been removed.

There are algorithms that estimate the partial autocorrelation from the sample
autocorrelation based on the exact theoretical relationship between the PACF and the ACF.

A correlogram is simply a plot of the ACF or PACF for sequential lags, k=0,1,...,n. It allows
us to inspect the correlation structure across lags at one glance. The main usage of
correlograms is to detect any autocorrelation after the removal of the effects of deterministic
trend or seasonality. Both the ACF and the PACF are key diagnostic tools for the design of
linear time series models and we will review examples of ACF and PACF plots in the
following section on time series transformations.

How to diagnose and achieve stationarity
The statistical properties, such as the mean, variance, or autocorrelation, of a stationary
time series are independent of the period, that is, they don't change over time. Hence,
stationarity implies that a time series does not have a trend or seasonal effects and that
descriptive statistics, such as the mean or the standard deviation, when computed for
different rolling windows, are constant or do not change much over time. It reverts to its
mean, and the deviations have constant amplitude, while short-term movements always
look the same in the statistical sense.

Time Series Models Chapter 8

[230]

More formally, strict stationarity requires the joint distribution of any subset of time series
observations to be independent of time with respect to all moments. So, in addition to the
mean and variance, higher moments such as skew and kurtosis, also need to be constant,
irrespective of the lag between different observations. In most applications, we limit
stationarity to first and second moments so that the time series is covariance stationary with
constant mean, variance, and autocorrelation.

Note that we specifically allow for dependence between observations at different lags, just
like we want the input data for linear regression to be correlated with the
outcome. Stationarity implies that these relationships are stable, which facilitates prediction
as the model can focus on learning systematic patterns that take place within
stable statistical properties. It is important because classical statistical models assume that
the time series input data is stationary.

The following sections introduce diagnostics that help detect when data is not stationary,
and transformations that help meet these assumptions.

Time series transformations
To satisfy the stationarity assumption of linear time series models, we need to transform the
original time series, often in several steps. Common transformations include the application
of the (natural) logarithm to convert an exponential growth pattern into a linear trend and
stabilize the variance. Deflation implies dividing a time series by another series that causes
trending behavior, for example dividing a nominal series by a price index to convert it into
a real measure.

A series is trend-stationary if it reverts to a stable long-run linear trend. It can often be
made stationary by fitting a trend line using linear regression and using the residuals, or by
including the time index as an independent variable in a regression or AR(I)MA model (see
the following section on univariate time series models), possibly combined with logging or
deflating.

In many cases, de-trending is not sufficient to make the series stationary. Instead, we need
to transform the original data into a series of period-to-period and/or season-to-season
differences. In other words, we use the result of subtracting neighboring data points or
values at seasonal lags from each other. Note that when such differencing is applied to a
log-transformed series, the results represent instantaneous growth rates or returns in a
financial context.

If a univariate series becomes stationary after differencing d times, it is said to be integrated
of the order of d, or simply integrated if d=1. This behavior is due to so-called unit roots.

Time Series Models Chapter 8

[231]

How to diagnose and address unit roots
Unit roots pose a particular problem for determining the transformation that will render a
time series stationary. Time series are often modeled as stochastic processes of the
following autoregressive form that we will explore in more detail as a building block for
ARIMA models:

Where the current value is a weighted sum of past values plus a random disturbance. Such
a process has a characteristic equation of the following form:

If one of the roots of this equation equals 1, then the process is said to have a unit root. It
will be non-stationary but does not necessarily need to have a trend. If the remaining roots
of the characteristic equation are less than 1 in absolute terms, the first difference of the
process will be stationary, and the process is integrated (of order 1) or I(1). With additional
roots larger than 1 in absolute terms, the order of integration is higher and additional
differencing will be required.

In practice, time series of interest rates or asset prices are often not stationary,
for example, because there does not exist a price level to which the series reverts. The most
prominent example of a non-stationary series is the random walk for a time series of price,
pt, for a given starting price, p0 (for example, a stock's IPO price) and a white-noise
disturbance, ε, that satisfies the following:

Repeated substitution shows that the current value, pt, is the sum of all prior
disturbances or innovations, ε, and the initial price, p0. If the equation includes a constant
term, then the random walk is said to have drift. Hence, the random walk is an
autoregressive stochastic process of the following form:

Time Series Models Chapter 8

[232]

With the characteristic equation, , that has a unit root and is both non-
stationary and integrated of order 1. On the one hand, given the i.i.d. nature of ε, the
variance of the time series equals σ2, which is not second-order stationary and implies that,
in principle, the series could, over time, assume any variable. On the other hand, taking the
first difference, Δpt=pt-pt-1, leaves Δpt=ε t, which is stationary, given the statistical assumption
about ε.

The defining characteristic of a unit-root non-stationary series is long memory: since
current values are the sum of past disturbances, large innovations persist for much longer
than for a mean-reverting, stationary series.

In addition to using the difference between neighboring data points to remove a constant
pattern of change, it can be used to apply seasonal differencing to remove patterns of
seasonal change. This involves taking the difference of values at a lag distance that
represents the length of a seasonal pattern, which is four quarters, or 12 months, apart to
remove both seasonality and linear trend.

Identifying the correct transformation, and in particular, the appropriate number and lags
for differencing is not always clear-cut. Some rules have been suggested, summarized as
follows:

Positive autocorrelations up to 10+ lags: Probably needs higher-order
differencing.
Lag-1 autocorrelation close to zero or negative, or generally small and
patternless: No need for higher-order differencing.
Lag-1 autocorrelation < -0.5: Series may be over-differenced.
Slightly over- or under-differencing can be corrected with AR or MA terms.
Optimal differencing often produces the lowest standard deviation, but not
always.
A model without differencing assumes that the original series is stationary,
including mean-reverting. It normally includes a constant term to allow for a
non-zero mean.
A model with one order of differencing assumes that the original series has a
constant average trend and should include a constant term.
A model with two orders of differencing assumes that the original series has a
time-varying trend and should not include a constant.

Time Series Models Chapter 8

[233]

Some authors recommend fractional differencing as a more flexible approach to rendering
an integrated series stationary and may be able to keep more information or signal than
simple or seasonal differences at discrete intervals (see references on GitHub).

Unit root tests
Statistical unit root tests are a common way to determine objectively whether (additional)
differencing is necessary. These are statistical hypothesis tests of stationarity that are
designed to determine whether differencing is required.

The augmented Dickey-Fuller (ADF) test evaluates the null hypothesis that a time series
sample has unit root against the alternative of stationarity. It regresses the differenced time
series on a time trend, the first lag, and all lagged differences, and computes a test statistic
from the value of the coefficient on the lagged time series value. statsmodels makes it
easy to implement (see companion notebook).

Formally, the ADF test for a time series, yt, runs the linear regression:

Where α is a constant, β is a coefficient on a time trend, and p refers to the number of lags
used in the model. The α=β =0 constraint implies a random walk, whereas only β=0 implies
a random walk with drift. The lag order is usually decided using the AIC and BIC
information criteria introduced in Chapter 7, Linear Models.

The ADF test statistics uses the sample coefficient, γ, that, under the null hypothesis of unit-
root non-stationarity equals zero, and is negative otherwise. It intends to demonstrate that,
for an integrated series, the lagged series value should not provide useful information in
predicting the first difference above and beyond lagged differences.

Time Series Models Chapter 8

[234]

How to apply time series transformations
The following chart shows time series for the NASDAQ stock index and industrial
production for the 30 years through 2017 in original form, as well as the transformed
versions after applying the logarithm and subsequently applying first and seasonal
differences (at lag 12), respectively. The charts also display the ADF p-value, which allows
us to reject the hypothesis of unit-root non-stationarity after all transformations in both
cases:

We can further analyze the relevant time series characteristics for the transformed series
using a Q-Q plot that compares the quantiles of the distribution of the time series
observation to the quantiles of the normal distribution and the correlograms based on the
ACF and PACF.

Time Series Models Chapter 8

[235]

For the NASDAQ plot, we notice that while there is no trend, the variance is not constant
but rather shows clustered spikes around periods of market turmoil in the late 1980s, 2001,
and 2008. The Q-Q plot highlights the fat tails of the distribution with extreme values more
frequent than the normal distribution would suggest. The ACF and the PACF show similar
patterns with autocorrelation at several lags appearing significant:

For the monthly time series on industrial manufacturing production, we notice a large
negative outlier following the 2008 crisis as well as the corresponding skew in the Q-Q plot.
The autocorrelation is much higher than for the NASDAQ returns and declines smoothly.
The PACF shows distinct positive autocorrelation patterns at lag 1 and 13, and significant
negative coefficients at lags 3 and 4:

Time Series Models Chapter 8

[236]

Univariate time series models
Multiple linear-regression models expressed the variable of interest as a linear combination
of predictors or input variables. Univariate time series models relate the value of the time
series at the point in time of interest to a linear combination of lagged values of the series
and possibly past disturbance terms.

While exponential smoothing models are based on a description of the trend and
seasonality in the data, ARIMA models aim to describe the autocorrelations in the
data. ARIMA(p, d, q) models require stationarity and leverage two building blocks:

Autoregressive (AR) terms consisting of p-lagged values of the time series
Moving average (MA) terms that contain q-lagged disturbances

The I stands for integrated because the model can account for unit-root non-stationarity by
differentiating the series d times. The term autoregression underlines that ARIMA models
imply a regression of the time series on its own values.

Time Series Models Chapter 8

[237]

We will introduce the ARIMA building blocks, simple autoregressive (AR) and moving
average (MA) models, and explain how to combine them in autoregressive moving-average
(ARMA) models that may account for series integration as ARIMA models or include
exogenous variables as AR(I)MAX models. Furthermore, we will illustrate how to include
seasonal AR and MA terms to extend the toolbox to also include SARMAX models.

How to build autoregressive models
An AR model of order p aims to capture the linear dependence between time series values
at different lags and can be written as follows:

This closely resembles a multiple linear regression on lagged values of yt. This model has
the following characteristic equation:

The inverses of the solution to this equation in x are the characteristic roots, and the AR(p)
process is stationary if these roots are all less than 1 in absolute terms, and unstable
otherwise. For a stationary series, multi-step forecasts will converge to the mean of the
series.

We can estimate the model parameters with the familiar least squares method using the
p+1, ..., T observations to ensure there is data for each lagged term and the outcome.

How to identify the number of lags
In practice, the challenge consists in deciding on the appropriate order p of lagged terms.
The time series analysis tools for serial correlation play a key role. The ACF estimates the
autocorrelation between observations at different lags, which in turn results from both
direct and indirect linear dependence.

Hence, for an AR model of order k, the ACF will show a significant serial correlation up
to lag k and, due to the inertia caused by the indirect effects of the linear relationship, will
extend to subsequent lags and eventually trail off as the effect was weakened. On the other
hand, the PACF only measures the direct linear relationship between observations a given
lag apart so that it will not reflect correlation for lags beyond k.

Time Series Models Chapter 8

[238]

How to diagnose model fit
If the model captures the linear dependence across lags, then the residuals should resemble
white noise.

In addition to inspecting the ACF to verify the absence of significant autocorrelation
coefficients, the Ljung-Box Q statistic allows us to test the hypothesis that the residual series
follows white noise. The null hypothesis is that all m serial correlation coefficients are zero
against the alternative that some coefficients are not. The test statistic is computed from the
sample autocorrelation coefficients, ρk, for different lags, k, and follows an Χ2 distribution:

As we will see, statsmodels provides information about the significance of coefficients for
different lags, and insignificant coefficients should be removed. If the Q statistic rejects the
null hypothesis of no autocorrelation, you should consider additional AR terms.

How to build moving average models
An MA model of order q uses q past disturbances rather than lagged values of the time
series in a regression-like model, as follows:

Since we do not observe the white-noise disturbance values, εt, MA(q) is not a regression
model like the ones we have seen so far. Rather than using least squares, MA(q) models are
estimated using maximum likelihood (MLE), alternatively initializing or estimating the
disturbances at the beginning of the series and then recursively and iteratively computing
the remainder.

The MA(q) model gets its name from representing each value of yt as a weighted moving
average of the past q innovations. In other words, current estimates represent a correction
relative to past errors made by the model. The use of moving averages in MA(q) models
differs from that of exponential smoothing or the estimation of seasonal time series
components because an MA(q) model aims to forecast future values as opposed to de-
noising or estimating the trend cycle of past values.

Time Series Models Chapter 8

[239]

MA(q) processes are always stationary because they are the weighted sum of white noise
variables that are themselves stationary.

How to identify the number of lags
A time series generated by an MA(q) process is driven by the residuals from the q prior-
model predictions. Hence, the ACF for the MA(q) process will show significant coefficients
for values up to the lag, q, and then decline sharply because this is how the series values are
assumed to have been generated.

The relationship between AR and MA models
An AR(p) model can be expressed as an MA(∞) process using repeated substitution. When
imposing constraints on the size of its coefficients, an MA(q) process, it becomes invertible
and can be expressed as an AR(∞) process.

How to build ARIMA models and extensions
Autoregressive integrated moving-average ARIMA(p, d, q) models combine AR(p) and
MA(q) processes to leverage the complementarity of these building blocks and simplify
model development by using a more compact form and reducing the number of
parameters, in turn reducing the risk of overfitting.

The models also take care of eliminating unit-root nonstationarity by using the dth

difference of the time series values. An ARIMA(p, 1, q) model is the same as using an
ARMA(p, q) model with the first differences of the series. Using y' to denote the original
series after non-seasonal differencing d times, the ARIMA(p, d, q) model is simply:

ARIMA models are also estimated using Maximum Likelihood. Depending on the
implementation, higher-order models may generally subsume lower-order models. For
example, statsmodels includes all lower-order p and q terms and does not permit
removing coefficients for lags below the highest value. In this case, higher-order models
will always fit better. Be careful not to overfit your model to the data by using too many
terms.

Time Series Models Chapter 8

[240]

How to identify the number of AR and MA terms
Since AR(p) and MA(q) terms interact, the information provided by the ACF and PACF is
no longer reliable and can only be used as a starting point.

Traditionally, the AIC and BIC information criteria have been used to rely on in-sample fit
when selecting the model design. Alternatively, we can rely on out-of-sample tests to cross-
validate multiple parameter choices.

The following summary provides some generic guidance to choose the model order in the
case of considering AR and MA models in isolation:

The lag beyond which the PACF cuts off is the indicated number of AR terms. If
the PACF of the differenced series cuts off sharply and/or the lag-1
autocorrelation is positive, add one or more AR terms.
The lag beyond which the ACF cuts off is the indicated number of MA terms. If
the ACF of the differenced series displays a sharp cutoff and/or the lag-1
autocorrelation is negative, consider adding an MA term to the model.
AR and MA terms may cancel out each other's effects, so always try to reduce the
number of AR and MA terms by 1 if your model contains both to avoid
overfitting, especially if the more complex model requires more than 10 iterations
to converge.
If the AR coefficients sum to nearly 1 and suggest a unit root in the AR part of the
model, eliminate 1 AR term and difference the model once (more).
If the MA coefficients sum to nearly 1 and suggest a unit root in the MA part of
the model, eliminate 1 MA term and reduce the order of differencing by 1.
Unstable long-term forecasts suggest there may be a unit root in the AR or MA
part of the model.

Adding features – ARMAX
An ARMAX model adds input variables or covariate on the right-hand side of the ARMA
time series model (assuming the series is stationary so we can skip differencing):

This resembles a linear regression model but is quite difficult to interpret because the effect
of β on yt is not the effect of an increase in xt by one unit as in linear regression. Instead, the
presence of lagged values of yt on the right-hand side of the equation implies that the
coefficient can only be interpreted given the lagged values of the response variable, which
is hardly intuitive.

Time Series Models Chapter 8

[241]

Adding seasonal differencing – SARIMAX
For time series with seasonal effects, we can include AR and MA terms that capture the
seasonality's periodicity. For instance, when using monthly data and the seasonal effect
length is one year, the seasonal AR and MA terms would reflect this particular lag length.

The ARIMAX(p, d, q) model then becomes a SARIMAX(p, d, q) x (P, D, Q)s model, which is
a bit more complicated to write out, but the references on GitHub, including the
statsmodels documentation, provide this information in detail.

We will now build a seasonal ARMA model using macro-data to illustrate the
implementation.

How to forecast macro fundamentals
We will build a SARIMAX model for monthly data on an industrial production time series
for the 1988-2017 period. As illustrated in the first section on analytical tools, the data has
been log-transformed, and we are using seasonal (lag-12) differences. We estimate the
model for a range of both ordinary and conventional AR and MA parameters using a
rolling window of 10 years of training data, and evaluate the RMSE of the 1-step-ahead
forecast, as shown in the following simplified code (see GitHub for details):

for p1 in range(4): # AR order
 for q1 in range(4): # MA order
 for p2 in range(3): # seasonal AR order
 for q2 in range(3): # seasonal MA order
 y_pred = []
 for i, T in enumerate(range(train_size, len(data))):
 train_set = data.iloc[T - train_size:T]
 model = tsa.SARIMAX(endog=train_set, # model
specification
 order=(p1, 0, q1),
 seasonal_order=(p2, 0, q2,
12)).fit()

 preds.iloc[i, 1] = model.forecast(steps=1)[0] # 1-
step ahead forecast

 mse = mean_squared_error(preds.y_true, preds.y_pred)
 test_results[(p1, q1, p2, q2)] = [np.sqrt(mse),
preds.y_true.sub(preds.y_pred).std(),
 np.mean(aic)]

Time Series Models Chapter 8

[242]

We also collect the AIC and BIC criteria that show a very high rank correlation coefficient of
0.94, with BIC favoring models with slightly fewer parameters than AIC. The best five
models by RMSE are:

 RMSE AIC BIC
p1 q1 p2 q2
2 3 1 0 0.009323 -772.247023 -752.734581
3 2 1 0 0.009467 -768.844028 -749.331586
2 2 1 0 0.009540 -770.904835 -754.179884
 3 0 0 0.009773 -760.248885 -743.523935
 2 0 0 0.009986 -758.775827 -744.838368

We re-estimate a SARIMA(2, 0 ,3) x (1, 0, 0) model, as follows:

best_model = tsa.SARIMAX(endog=industrial_production_log_diff, order=(2, 0,
3),
 seasonal_order=(1, 0, 0, 12)).fit()
print(best_model.summary())

We obtain the following summary:

Time Series Models Chapter 8

[243]

The coefficients are significant, and the Q statistic rejects the hypothesis of further
autocorrelation. The correlogram similarly indicates that we have successfully eliminated
the series' autocorrelation:

How to use time series models to forecast
volatility
A particularly important area of application for univariate time series models is the
prediction of volatility. The volatility of financial time series is usually not constant over
time but changes, with bouts of volatility clustering together. Changes in variance create
challenges for time series forecasting using the classical ARIMA models. To address this
challenge, we will now model volatility so that we can predict changes in variance.

Time Series Models Chapter 8

[244]

Heteroskedasticity is the technical term for changes in a variable's variance.
The autoregressive conditional heteroskedasticity (ARCH) model expresses
the variance of the error term as a function of the errors in previous periods. More
specifically, it assumes that the error variance follows an AR(p) model.

The generalized autoregressive conditional heteroskedasticity (GARCH) model broadens
the scope to ARMA models. Time series forecasting often combines ARIMA models for the
expected mean and ARCH/GARCH models for the expected variance of a time series. The
2003 Nobel Prize in Economics was awarded to Robert Engle and Clive Granger for
developing this class of models. The former also runs the Volatility Lab at New York
University's Stern School (see GitHub references) with numerous online examples and tools
concerning the models we will discuss and their numerous extensions.

The autoregressive conditional heteroskedasticity
(ARCH) model
The ARCH(p) model is simply an AR(p) model applied to the variance of the residuals of a
time series model that makes this variance at time t conditional on lagged observations of
the variance. More specifically, the error terms, εt, are residuals of a linear model, such as
ARIMA, on the original time series and are split into a time-dependent standard deviation,
σt, and a disturbance, zt, as follows:

An ARCH(p) model can be estimated using OLS. Engle proposed a method to identify the
appropriate ARCH order using the Lagrange multiplier test that corresponds to the F-test
of the hypothesis that all coefficients in linear regression are zero (see Chapter 7, Linear
Models).

One strength of the model is that it produces volatility, estimates positive excess
kurtosis—that is, fat tails relative to the normal distribution—which in turn is in line with
empirical observations about returns. Weaknesses include that the model assumes the same
effect for positive and negative volatility shocks because it depends on the square of the
previous shocks, whereas asset prices are known to respond differently to positive and
negative shocks. The ARCH model also does not offer new insight into the source of
variations of a financial time series because it just mechanically describes the conditional
variance. Finally, ARCH models are likely to overpredict the volatility because they
respond slowly to large, isolated shocks to the return series.

Time Series Models Chapter 8

[245]

For a properly-specified ARCH model, the standardized residuals (divided by the model
estimate for the period of standard deviation) should resemble white noise and can be
subjected to a Ljung-Box Q test.

Generalizing ARCH – the GARCH model
The ARCH model is relatively simple but often requires many parameters to capture
the volatility patterns of an asset-return series. The generalized ARCH (GARCH) model
applies to a log-return series, rt, with disturbances, εt = rt - μ, that follow a GARCH(p, q)
model if:

The GARCH(p, q) model assumes an ARMA(p, q) model for the variance of the error
term, εt.

Similar to ARCH models, the tail distribution of a GARCH(1,1) process is heavier than that
of a normal distribution. The model encounters the same weaknesses as the ARCH model.
For instance, it responds equally to positive and negative shocks.

Selecting the lag order
To configure the lag order for ARCH and GARCH models, use the squared residuals of the
time series trained to predict the mean of the original series. The residuals are zero-centered
so that their squares are also the variance. Then inspect the ACF and PACF plots of the
squared residuals to identify autocorrelation patterns in the variance of the time series.

Time Series Models Chapter 8

[246]

How to build a volatility-forecasting model
The development of a volatility model for an asset-return series consists of four steps:

Build an ARMA time series model for the financial time series based on the serial1.
dependence revealed by the ACF and PACF.
Test the residuals of the model for ARCH/GARCH effects, again relying on the2.
ACF and PACF for the series of the squared residual.
Specify a volatility model if serial correlation effects are significant, and jointly3.
estimate the mean and volatility equations.
Check the fitted model carefully and refine it if necessary.4.

When applying volatility forecasting to return series, the serial
dependence may be limited so that a constant mean may be used instead
of an ARMA model.

The arch library provides several options to estimate volatility-forecasting models. It offers
several options to model the expected mean, including a constant mean, the AR(p) model
discussed in the section on univariate time series models above as well as more recent
heterogeneous autoregressive processes (HAR) that use daily (1 day), weekly (5 days), and
monthly (22 days) lags to capture the trading frequencies of short-, medium-, and long-
term investors.

The mean models can be jointly defined and estimated with several conditional
heteroskedasticity models that include, in addition to ARCH and GARCH, the exponential
GARCH (EGARCH) model, which allows for asymmetric effects between positive and
negative returns and the heterogeneous ARCH (HARCH) model, which complements the
HAR mean model.

Time Series Models Chapter 8

[247]

We will use daily NASDAQ returns from 1998-2017 to demonstrate the usage of a GARCH
model (see the notebook arch_garch_models for details):

nasdaq = web.DataReader('NASDAQCOM', 'fred', '1998',
'2017-12-31').squeeze()
nasdaq_returns = np.log(nasdaq).diff().dropna().mul(100) # rescale to
facilitate optimization

The rescaled daily return series exhibits only limited autocorrelation, but the squared
deviations from the mean do have substantial memory reflected in the slowly-decaying
ACF and the PACF high for the first two and cutting off only after the first six lags:

plot_correlogram(nasdaq_returns.sub(nasdaq_returns.mean()).pow(2),
lags=120, title='NASDAQ Daily Volatility')

The function plot_correlogram produces the following output:

Time Series Models Chapter 8

[248]

Hence, we can estimate a GARCH model to capture the linear relationship of past
volatilities. We will use rolling 10-year windows to estimate a GARCH(p, q) model with p
and q ranging from 1-4 to generate 1-step out-of-sample forecasts. We then compare the
RMSE of the predicted volatility relative to the actual squared deviation of the return from
its mean to identify the most predictive model. We are using winsorized data to limit the
impact of extreme return values reflected in the very high positive skew of the volatility:

trainsize = 10 * 252 # 10 years
data = nasdaq_returns.clip(lower=nasdaq_returns.quantile(.05),
 upper=nasdaq_returns.quantile(.95))
T = len(nasdaq_returns)
test_results = {}
for p in range(1, 5):
 for q in range(1, 5):
 print(f'{p} | {q}')
 result = []
 for s, t in enumerate(range(trainsize, T-1)):
 train_set = data.iloc[s: t]
 test_set = data.iloc[t+1] # 1-step ahead forecast
 model = arch_model(y=train_set, p=p, q=q).fit(disp='off')
 forecast = model.forecast(horizon=1)
 mu = forecast.mean.iloc[-1, 0]
 var = forecast.variance.iloc[-1, 0]
 result.append([(test_set-mu)**2, var])
 df = pd.DataFrame(result, columns=['y_true', 'y_pred'])
 test_results[(p, q)] = np.sqrt(mean_squared_error(df.y_true,
df.y_pred))

The GARCH(2, 2) model achieves the lowest RMSE (same value as GARCH(4, 2) but with
fewer parameters), so we go ahead and estimate this model to inspect the summary:

am = ConstantMean(nasdaq_returns.clip(lower=nasdaq_returns.quantile(.05),
 upper=nasdaq_returns.quantile(.95)))
am.volatility = GARCH(2, 0, 2)
am.distribution = Normal()
model = am.fit(update_freq=5)
print(model.summary())

Time Series Models Chapter 8

[249]

The output shows the maximized log-likelihood as well as the AIC and BIC criteria that are
commonly minimized when selecting models based on in-sample performance (see
Chapter 7, Linear Models). It also displays the result for the mean model, which in this case
is just a constant estimate, as well as the GARCH parameters for the constant omega, the
AR parameters, α, and the MA parameters, β, all of which are statistically significant:

Let's now explore models for multiple time series and the concept of cointegration, which
will enable a new trading strategy.

Time Series Models Chapter 8

[250]

Multivariate time series models
Multivariate time series models are designed to capture the dynamic of multiple time series
simultaneously and leverage dependencies across these series for more reliable predictions.

Systems of equations
Univariate time series models like the ARMA approach, we just discussed are limited to
statistical relationships between a target variable and its lagged values or lagged
disturbances and exogenous series in the ARMAX case. In contrast, multivariate time series
models also allow for lagged values of other time series to affect the target. This effect
applies to all series, resulting in complex interactions, as illustrated in the following
diagram:

In addition to potentially better forecasting, multivariate time series are also used to gain
insights into cross-series dependencies. For example, in economics, multivariate time series
are used to understand how policy changes to one variable, for example, an interest rate,
may affect other variables over different horizons. The impulse-response function produced
by the multivariate model we will look at serves this purpose and allows us to simulate
how one variable responds to a sudden change in other variables. The concept of Granger
causality analyzes whether one variable is useful in forecasting another (in the least squares
sense). Furthermore, multivariate time series models allow for a decomposition of the
prediction error variance to analyze how other series contribute.

Time Series Models Chapter 8

[251]

The vector autoregressive (VAR) model
We will see how the vector autoregressive VAR(p) model extends the AR(p) model to k
series by creating a system of k equations where each contains p lagged values of all k
series. In the simplest case, a VAR(1) model for k=2 takes the following form:

This model can be expressed somewhat more concisely in matrix form:

The coefficients on the own lags provide information about the dynamics of the series itself,
whereas the cross-variable coefficients offer some insight into the interactions across the
series. This notation extends to the k series and order p, as follows:

VAR(p) models also require stationarity, so that the initial steps from univariate time series
modeling carry over. First, explore the series and determine the necessary transformations,
then apply the Augmented Dickey-Fuller test to verify that the stationarity criterion is met
for each series and apply further transformations otherwise. It can be estimated with OLS
conditional on initial information or with maximum likelihood, which is equivalent for
normally-distributed errors but not otherwise.

If some or all of the k series are unit-root non-stationary, they may be co-integrated. This
extension of the unit root concept to multiple time series means that a linear combination of
two or more series is stationary and, hence, mean-reverting. The VAR model is not
equipped to handle this case without differencing, instead use the Vector Error Correction
model (VECM, see references on GitHub). We will further explore cointegration because, if
present and assumed to persist, it can be leveraged for a pairs-trading strategy.

Time Series Models Chapter 8

[252]

The determination of the lag order also takes its cues from the ACF and PACF for each
series but is constrained by the fact that the same lag order applies to all series. After model
estimation, residual diagnostics also call for a result resembling white noise, and model
selection can use in-sample information criteria or, preferably, out-of-sample predictive
performance to cross-validate alternative model designs if the ultimate goal is to use the
model for prediction.

As mentioned in the univariate case, predictions of the original time series require us to
reverse the transformations applied to make a series stationary before training the model.

How to use the VAR model for macro
fundamentals forecasts
We will extend the univariate example of a single time series of monthly data on industrial
production and add a monthly time series on consumer sentiment, both provided by the
Federal Reserve's data service. We will use the familiar pandas-datareader library to
retrieve data from 1970 through 2017:

df = web.DataReader(['UMCSENT', 'IPGMFN'], 'fred', '1970',
'2017-12').dropna()
df.columns = ['sentiment', 'ip']

Log-transforming the industrial production series and seasonal differencing using lag 12 of
both series yields stationary results:

df_transformed = pd.DataFrame({'ip': np.log(df.ip).diff(12),
 'sentiment': df.sentiment.diff(12)}).dropna()

test_unit_root(df_transformed) # see notebook for details and additional
plots

 p-value
ip 0.0003
sentiment 0.0000

Time Series Models Chapter 8

[253]

This leaves us with the following series:

To limit the size of the output, we will just estimate a VAR(1) model using
the statsmodels VARMAX implementation (which allows for optional exogenous variables)
with a constant trend using the first 480 observations:

model = VARMAX(df_transformed.iloc[:480], order=(1,1),
trend='c').fit(maxiter=1000)

Time Series Models Chapter 8

[254]

This results in the following summary:

Time Series Models Chapter 8

[255]

The output contains the coefficients for both time series equations, as outlined in the
preceding VAR(1) illustration. statsmodels provides diagnostic plots to check whether the
residuals meet the white noise assumptions, which are not exactly met in this simple case:

Out-of-sample predictions can be generated as follows:

preds = model.predict(start=480, end=len(df_transformed)-1)

A visualization of actual and predicted values shows how the prediction lags the actual
values and does not capture non-linear out-of-sample patterns well:

Time Series Models Chapter 8

[256]

Cointegration – time series with a common trend
The concept of an integrated multivariate series is complicated by the fact that all the
component series of the process may be individually integrated but the process is not
jointly integrated in the sense that one or more linear combinations of the series exist that
produce a new stationary series.

In other words, a combination of two co-integrated series has a stable mean to which this
linear combination reverts. A multivariate series with this characteristic is said to be co-
integrated. This also applies when the individual series are integrated of a higher order and
the linear combination reduces the overall order of integration.

Time Series Models Chapter 8

[257]

cointegration is different from correlation: two series can be highly correlated but need not
be co-integrated. For example, if two growing series are constant multiples of each other,
their correlation will be high but any linear combination will also grow rather than revert to
the mean.

The VAR analysis can still be applied to integrated processes using the error-correction
form of a VAR model that uses the first differences of the individual series plus an error
correction term in levels.

Testing for cointegration
There are two major approaches to testing for cointegration:

The Engle–Granger two-step method
The Johansen procedure

The Engle–Granger method involves regressing one series on another, and then applying
an ADF unit-root test to the regression residual. If the null hypothesis can be rejected so
that we assume the residuals are stationary, then the series are co-integrated. A key benefit
of this approach is that the regression coefficient represents the multiplier that renders the
combination stationary, that is, mean-reverting. We will return to this aspect when
leveraging cointegration for a pairs-trading strategy. On the other hand, this approach is
limited to identifying cointegration for pairs of series as opposed to larger groups of series.

The Johansen procedure, in contrast, tests the restrictions imposed by cointegration on a
vector autoregression (VAR) model as discussed in the previous section. More specifically,
after subtracting the target vector from both sides of the generic VAR(p) preceding
equation, we obtain the error correction model (ECM) formulation:

The resulting modified VAR(p) equation has only one vector term in levels, that is, not
expressed as difference using the operator, Δ. The nature of cointegration depends on the
properties of the coefficient matrix, Π, of this term, in particular on its rank. While this
equation appears structurally similar to the ADF test setup, there are now several potential
constellations of common trends and orders of integration because there are multiple series
involved. For details, see the references listed on GitHub, including with respect to practical
challenges regarding the scaling of individual series.

Time Series Models Chapter 8

[258]

How to use cointegration for a pairs-trading
strategy
Pairs-trading relies on a stationary, mean-reverting relationship between two asset prices.
In other words, the ratio or difference between the two prices, also called the spread, may
over time diverge but should ultimately return to the same level. Given such a pair, the
strategy consists of going long (that is, purchasing) the under-performing asset because it
would require a period of outperformance to close the gap. At the same time, one would
short the asset that has moved away from the price anchor in the positive direction to fund
the purchase.

cointegration represents precisely this type of stable relationship between two price series
anchored by a common mean. Assuming cointegration persists, convergence must
ultimately ensue, either by the underperforming stock rising or the outperforming stock
coming down. The strategy would be profitable regardless, which has the added advantage
of being hedged against general market movements either way.

However, the spread will constantly change, sometimes widening and sometimes
narrowing, or remain unchanged as both assets move in unison. The challenge of pairs-
trading consists of maintaining a hedged position by adjusting the relative holdings as the
spread changes.

In practice, given a universe of assets, a pairs-trading strategy will search for co-integrated
pairs by running a statistical test on each pair. The key challenge here is to account for
multiple testing biases, as outlined in Chapter 6, Machine Learning Workflow. The
statsmodels library implements both the Engle-Granger cointegration test and the
Johansen test.

In order to estimate the spread, run a linear regression to get the coefficient for the linear
combination of two integrated asset price series that produce a stationary combined series.
As mentioned, using linear regression to estimate the coefficient is known as the Engle-
Granger test of cointegration.

Time Series Models Chapter 8

[259]

Summary
In this chapter, we explored linear time series models for the univariate case of individual
series as well as multivariate models for several interacting series. We encountered
applications that predict macro fundamentals, models that forecast asset or portfolio
volatility with widespread use in risk management, as well as multivariate VAR models
that capture the dynamics of multiple macro series, as well as the concept of cointegration,
which underpins the popular pair-trading strategy.

Similar to the previous chapter, we saw how linear models add a lot of structure to the
model, that is, they make strong assumptions that potentially require transformations and
extensive testing to verify that these assumptions are met. If they are, model-training and -
interpretation is straightforward, and the models provide a good baseline case that more
complex models may be able to improve on, as we will see in the following chapters.

9
Bayesian Machine Learning

In this chapter, we will introduce Bayesian approaches to machine learning, and how their
different perspectives on uncertainty add value when developing and evaluating
algorithmic trading strategies.

Bayesian statistics allow us to quantify the uncertainty about future events and refine our
estimates in a principled way as new information arrives. This dynamic approach adapts
well to the evolving nature of financial markets. It is particularly useful when there is less
relevant data and we require methods that systematically integrate prior knowledge or
assumptions.

We will see that Bayesian approaches to machine learning allow for richer insights into the
uncertainty around statistical metrics, parameter estimates, and predictions. The
applications range from more granular risk management to dynamic updates of predictive
models that incorporate changes in the market environment. The Black-Litterman approach
to asset allocation (see Chapter 5, Strategy Evaluation, can be interpreted as a Bayesian
model. It computes the expected return as an average of the market equilibrium and the
investor's views, weighted by each asset's volatility, cross-asset correlations, and the
confidence in each forecast.

More specifically, in this chapter, we will cover the following topics:

How Bayesian statistics apply to machine learning
How to use probabilistic programming with PyMC3
How to define and train machine learning models
How to run state-of-the-art sampling methods to conduct approximate inference
How to apply Bayesian machine learning to compute dynamic Sharpe ratios,
build Bayesian classifiers, and estimate stochastic volatility

References, links to additional material, and the code examples for this
chapter are in the corresponding directory of the GitHub repository.
Please follow the installation instructions provided in Chapter 1, Machine
Learning for Trading.

Bayesian Machine Learning Chapter 9

[261]

How Bayesian machine learning works
Classical statistics is also called frequentist because it interprets probability as the relative
frequency of an event over the long run, that is, after observing a large number of trials. In
the context of probabilities, an event is a combination of one or more elementary outcomes
of an experiment, such as any of six equal results in rolls of two dice or an asset price
dropping by 10% or more on a given day.

Bayesian statistics, in contrast, views probability as a measure of the confidence or belief in
the occurrence of an event. The Bayesian perspective of probability leaves more room for
subjective views and, consequently, differences in opinions than the frequentist
interpretation. This difference is most striking for events that do not happen often enough
to arrive at an objective measure of long-term frequency.

Put differently, frequentist statistics assume that data is a random sample from a
population and aims to identify the fixed parameters that generated the data. Bayesian
statistics, in turn, take the data as given and considers the parameters to be random
variables with a distribution that can be inferred from data. As a result, frequentist
approaches require at least as many data points as there are parameters to be estimated.
Bayesian approaches, on the other hand, are compatible with smaller datasets and are well-
suited for online learning, one sample at a time.

The Bayesian view is very useful for many real-world events that are rare or unique, at least
in important respects. Examples include the outcome of the next election or the question of
whether the markets will crash within three months. In each case, there is both relevant
historical data as well as unique circumstances that unfold as the event approaches.

First, we will introduce Bayes' theorem, which crystallizes the concept of updating beliefs
by combining prior assumptions with new empirical evidence and comparing the resulting
parameter estimates with their frequentist counterparts. We will then demonstrate two
approaches to Bayesian statistical inference that produce insights into the posterior
distribution of the latent, that is, unobserved parameters, such as their expected values,
under different circumstances:

Conjugate priors facilitate the updating process by providing a closed-form1.
solution, but exact, analytical methods are not always available.
Approximate inference simulates the distribution that results from combining2.
assumptions and data and uses samples from this distribution to compute
statistical insights.

Bayesian Machine Learning Chapter 9

[262]

How to update assumptions from empirical
evidence
The theorem that Reverend Thomas Bayes came up with over 250 years ago uses
fundamental probability theory to prescribe how probabilities or beliefs should change as
relevant new information arrives. The following quote by – John Maynard Keynes
captures the Bayesian mindset:

"When the facts change, I change my mind. What do you do, sir?"

It relies on the conditional and total probability and the chain rule; see the references on
GitHub for reviews of these concepts.

The belief concerns a single or vector of parameters θ (also called hypotheses). Each
parameter can be discrete or continuous. θ could be a one-dimensional statistic like the
(discrete) mode of a categorical variable or a (continuous) mean, or a higher dimensional
set of values like a covariance matrix or the weights of a deep neural network.

A key difference of frequentist statistics is that Bayesian assumptions are expressed as
probability distributions rather than parameter values. Consequently, while frequentist
inference focuses on point estimates, Bayesian inference yields probability distributions.

Bayes' Theorem updates the beliefs about the parameters of interest by computing the
posterior probability distribution from the following inputs, as shown in the following
diagram:

The prior distribution indicates how likely we consider each possible hypothesis.
The likelihood function outputs the probability of observing a dataset given
certain values for the θ parameters.

Bayesian Machine Learning Chapter 9

[263]

The evidence measures how likely the observed data is given all possible
hypotheses. Hence, it is the same for all parameter values and serves to
normalize the numerator:

Bayes Theorem

The posterior is the product of prior and likelihood, divided by the evidence, and reflects
the updated probability distribution of the hypotheses, taking into account both prior
assumptions and the data. Viewed differently, the product of the prior and the likelihood
results from applying the chain rule to factorize the joint distribution of data and
parameters.

With higher-dimensional, continuous variables, the formulation becomes more complex
and involves (multiple) integrals. An alternative formulation uses odds to express the
posterior odds as the product of the prior odds times the likelihood ratio (see the references
for more details).

Exact inference: Maximum a Posteriori estimation
Practical applications of Bayes' rule to exactly compute posterior probabilities are quite
limited because the computation of the evidence term in the denominator is quite
challenging. The evidence reflects the probability of the observed data over all possible
parameter values. It is also called the marginal likelihood because it requires marginalizing
out the parameters' distribution by adding or integrating over their distribution. This is
generally only possible in simple cases with a small number of discrete parameters that
assume very few values.

Bayesian Machine Learning Chapter 9

[264]

Maximum a posteriori probability (MAP) estimation leverages that the evidence is a
constant factor that scales the posterior to meet the requirements for a probability
distribution. Since the evidence does not depend on θ, the posterior distribution is
proportional to the product of the likelihood and the prior. Hence, MAP estimation chooses
the value of θ that maximizes the posterior given the observed data and the prior belief,
that is, the mode of the posterior.

The MAP approach contrasts with the maximum likelihood estimation (MLE) of
parameters, which define a probability distribution. MLE picks the parameter value θ that
maximizes the likelihood function for the observed training data.

A look at the definitions highlights that MAP differs from MLE by including the prior
distribution. In other words, unless the prior is a constant, the MAP estimate θ will differ
from its MLE counterpart:

The MLE solution tends to reflect the frequentist notion that probability estimates should
reflect observed ratios. On the other hand, the impact of the prior on the MAP estimate
often corresponds to adding data that reflects the prior assumptions to the MLE. For
example, a strong prior that a coin is biased can be incorporated in the MLE context by
adding skewed trial data.

Prior distributions are a critical ingredient for Bayesian models. We will now introduce
some convenient choices that facilitate analytical inference.

How to select priors
The prior should reflect knowledge of the distribution of the parameters because it
influences the MAP estimate. If a prior is not known with certainty, we need to make a
choice, often from several reasonable options. In general, it is good practice to justify the
prior and check for robustness by testing whether alternatives lead to the same conclusion.

There are several types of priors:

Objective priors maximize the impact of the data on the posterior. If the
parameter distribution is unknown, we can select an uninformative prior like a
uniform distribution, also called a flat prior, over a relevant range of parameter
values.

Bayesian Machine Learning Chapter 9

[265]

In contrast, subjective priors aim to incorporate information that's external to the
model into the estimate.
An empirical prior combines Bayesian and frequentist methods and uses
historical data to eliminate subjectivity, such as by estimating various moments
to fit a standard distribution.

In the context of a machine learning model, the prior can be viewed as a regularizer because
it limits the values that the posterior can assume. Parameters that have zero prior
probability, for example, are not part of the posterior distribution. Generally, more good
data allows for stronger conclusions and reduces the influence of the prior.

How to keep inference simple – conjugate priors
A prior distribution is conjugate with respect to the likelihood when the resulting posterior
is of the same type of distribution as the prior, except for different parameters. When both
the prior and the likelihood are normally distributed, then the posterior is also normally
distributed.

The conjugacy of the prior and likelihood implies a closed-form solution for the posterior
that facilitates the update process and avoids the need to use numerical methods to
approximate the posterior. Moreover, the resulting posterior can be used as prior for the
next update step.

Let's illustrate this process using a binary classification example for stock price movements.

How to dynamically estimate the probabilities of asset
price moves
When the data consists of binary Bernoulli random variables with a certain success
probability for a positive outcome, the number of successes in repeated trials follows a
Binomial distribution. The conjugate prior is the Beta distribution with support over the
interval [0, 1] and two shape parameters to model arbitrary prior distributions over the
success probability. Hence, the posterior distribution is also a Beta distribution that we can
derive by directly updating the parameters.

We will collect samples of different sizes of binarized daily S&P 500 returns, where the
positive outcome is a price increase. Starting from an uninformative prior that allocates
equal probability to each possible success probability in the interval [0, 1], we compute the
posterior for different evidence samples.

Bayesian Machine Learning Chapter 9

[266]

The following code sample shows that the update consists of simply adding the observed
numbers of success and failure to the parameters of the prior distribution to obtain the
posterior:

n_days = [0, 1, 3, 5, 10, 25, 50, 100, 500]
outcomes = sp500_binary.sample(n_days[-1])
p = np.linspace(0, 1, 100)

uniform (uninformative) prior
a = b = 1
for i, days in enumerate(n_days):
 up = outcomes.iloc[:days].sum()
 down = days - up
 update = stats.beta.pdf(p, a + up , b + down)

The resulting posterior distributions are plotted in the following graphs. They illustrate the
evolution from a uniform prior that views all success probabilities as equally likely to an
increasingly peaked distribution.

After 500 samples, the probability is concentrated near the actual probability of a positive
move at 54.7% from 2010 to 2017. It also shows the small differences between MLE and
MAP estimates, where the latter tends to be pulled slightly toward the expected value of
the uniform prior, as shown in the following diagram:

Posterior probabilities

Bayesian Machine Learning Chapter 9

[267]

In practice, the use of conjugate priors is limited to low-dimensional cases. In addition, the
simplified MAP approach avoids computing the evidence term, but has several
shortcomings even when it is available; it does not return a distribution so that we can
derive a measure of uncertainty, or use it as a prior. Hence, we need to resort to
approximates rather than exact inference using numerical methods and stochastic
simulation, which we will introduce next.

Approximate inference: stochastic versus
deterministic approaches
For most models of practical relevance, it will not be possible to derive the exact posterior
distribution analytically and compute the expected values for the latent parameters. The
model may have too many parameters, or the posterior distribution may be too complex for
an analytical solution. For continuous variables, the integrals may not have closed-form
solutions, while the dimensionality of the space and the complexity of the integrand may
prohibit numerical integration. For discrete variables, the marginalizations involve
summing over all possible configurations of the hidden variables, and though this is always
possible in principle, we often find in practice that there may be exponentially many
hidden states so that exact calculation is prohibitively expensive.

Although for some applications the posterior distribution over unobserved parameters will
be of interest, more often than not it is primarily required to evaluate expectations, for
example, to make predictions. In such situations, we can rely on approximate inference:

Stochastic techniques based on Markov Chain Monte Carlo (MCMC) sampling
have popularized the use of Bayesian methods across many domains. They
generally have the ability to converge to the exact result. In practice, sampling
methods can be computationally demanding and are often limited to small-scale
problems.
Deterministic methods, known as variational inference or variational Bayes, are
based on analytical approximations to the posterior distribution and can scale
well to large applications. They make simplified assumptions, for example, that
the posterior factorizes in a particular way or it has a specific parametric form
such as a Gaussian. Hence, they do not generate exact results and can be used as
complements to sampling methods.

Bayesian Machine Learning Chapter 9

[268]

Sampling-based stochastic inference
Sampling is about drawing samples, X=(x1, ..., xn), from a given distribution, p(x). Assuming
the samples are independent, the law of large numbers ensures that for a growing number
of samples, the fraction of a given instance, xi, in the sample (for the discrete case)
corresponds to its probability, p(x=xi). In the continuous case, the analogous reasoning
applies to a given region of the sample space. Hence, averages over samples can be used as
unbiased estimators of the expected values of parameters of the distribution.

A practical challenge consists in ensuring independent sampling because the distribution is
unknown. Dependent samples may still be unbiased, but tend to increase the variance of
the estimate so that more samples will be needed for an equally precise estimate as for
independent samples.

Sampling from a multivariate distribution is computationally demanding as the number of
states increases exponentially with the number of dimensions. Numerous algorithms
facilitate the process (see references for an overview). Now, we will introduce a few
popular variations of MCMC-based methods.

Markov chain Monte Carlo sampling
A Markov chain is a dynamic stochastic model that describes a random walk over a set of
states, connected by transition probabilities. The Markov property stipulates that the
process has no memory, and the next step only depends on the current state. In other
words, it's conditional on the present, past, and future being independent, that is,
information about past states does not help to predict the future beyond what we know
from the present.

Monte Carlo methods rely on repeated random sampling to approximate results that may
be deterministic, but that does not permit an analytic, exact solution. It was developed
during the Manhattan Project to estimate energy at the atomic level and received its
enduring code name to ensure secrecy.

Many algorithms apply the Monte Carlo method to a Markov Chain, and generally proceed
as follows:

Start at the current position.1.
Draw a new position from a proposal distribution.2.

Bayesian Machine Learning Chapter 9

[269]

Evaluate the probability of the new position in light of data and prior3.
distributions:

If sufficiently likely, move to the new position1.
Otherwise, remain at the current position2.

Repeat from step 1.4.
After a given number of iterations, return all accepted positions.5.

MCMC aims to identify and explore interesting regions of the posterior that concentrate on
significant probability density. The memoryless process is said to converge when it
consistently moves through nearby high probability states of the posterior where the
acceptance rate increases. A key challenge is to balance the need for random exploration of
the sample space with the risk of reducing the acceptance rate.

The initial steps of this process are likely to be more reflective of the starting position than
the posterior and are typically discarded as burn-in samples. A key MCMC property is that
the process should forget about its initial position after a certain (but unknown) number of
iterations.

The remaining samples are called the trace of the process. Assuming convergence, the
relative frequency of samples approximates the posterior and can be used to compute
expected values based on the law of large numbers.

As indicated previously, the precision of the estimate depends on the serial correlation of
the samples collected by the random walk, each of which, by design, depends only on the
previous state. Higher correlation limits the effective exploration of the posterior and needs
to be subjected to diagnostic tests.

General techniques to design such a Markov chain include Gibbs sampling, the Metropolis-
Hastings algorithm, and more recent Hamiltonian MCMC methods that tend to perform
better.

Gibbs sampling
Gibbs sampling simplifies multivariate sampling to a sequence of one-dimensional draws.
From a starting point, it iteratively holds n-1 variables constant while sampling the nth

variable. It incorporates this sample and repeats.

The algorithm is very simple and easy to implement but produces highly correlated
samples that slow down convergence. Its sequential nature also prevents parallelization.

Bayesian Machine Learning Chapter 9

[270]

Metropolis-Hastings sampling
The Metropolis-Hastings algorithm randomly proposes new locations based on its current
state to effectively explore the sample space and reduce the correlation of samples relative
to Gibbs sampling. To ensure that it samples from the posterior, it evaluates the proposal
using the product of prior and likelihood, which is proportional to the posterior. It accepts
with a probability that depends on the result, which is relative to the corresponding value
for the current sample.

A key benefit of the proposal evaluation method is that it works with a proportional
evaluation rather than an exact evaluation of the posterior. However, it can take a long time
to converge because the random movements that are not related to the posterior can reduce
the acceptance rate so that a large number of steps produces only a small number of
(potentially correlated) samples. The acceptance rate can be tuned by reducing the variance
of the proposal distribution, but the resulting smaller steps imply less exploration.

Hamiltonian Monte Carlo – going NUTS
Hamiltonian Monte Carlo (HMC) is a hybrid method that leverages the first-order
derivative information of the gradient of the likelihood to propose new states for
exploration and overcome some of the challenges of MCMC. In addition, it incorporates
momentum to efficiently jump around the posterior. As a result, it converges faster to a
high-dimensional target distribution than simpler random-walk Metropolis or Gibbs
sampling.

The No-U-Turn sampler is a self-tuning HMC extension that adaptively regulates the size
and number of moves around the posterior before selecting a proposal. It works well on
high-dimensional and complex posterior distributions and allows many complex models to
be fit without specialized knowledge about the fitting algorithm itself. As we will see in the
next section, it is the default sampler in PyMC3.

Variational Inference
Variational Inference (VI) is a machine learning method that approximates probability
densities through optimization. In the Bayesian context, it approximates the posterior
distribution as follows:

Select a parametrized family of probability distributions1.
Find the member of this family closest to the target, as measured by Kullback-2.
Leibler divergence

Bayesian Machine Learning Chapter 9

[271]

Compared to MCMC, Variational Bayes tends to converge faster and scales to large data
better. While MCMC approximates the posterior with samples from the chain that will
eventually converge arbitrarily close to the target, variational algorithms approximate the
posterior with the result of the optimization, which is not guaranteed to coincide with the
target.

Variational Inference is better suited for large datasets and to quickly explore many models.
In contrast, MCMC will deliver more accurate results on smaller datasets or when time and
computational resources pose fewer constraints.

Automatic Differentiation Variational Inference (ADVI)
The downside of Variational Inference is the need for model-specific derivations and the
implementation of a tailored optimization routine that has slowed down widespread
adoption.

The recent Automatic Differentiation Variational Inference (ADVI) algorithm automates
this process so that the user only specifies the model, expressed as a program, and ADVI
automatically generates a corresponding variational algorithm (see references on GitHub
for implementation details).

We will see that PyMC3 supports various Variational Inference techniques, including
ADVI.

Probabilistic programming with PyMC3
Probabilistic programming provides a language to describe and fit probability distributions
so that we can design, encode, and automatically estimate and evaluate complex models. It
aims to abstract away some of the computational and analytical complexity to allow us to
focus on the conceptually more straightforward and intuitive aspects of Bayesian reasoning
and inference.

The field has become quite dynamic since new languages emerged. Uber open sourced
Pyro (based on PyTorch) and Google recently added a probability module to TensorFlow
(see the resources linked on GitHub).

As a result, the practical relevance and use of Bayesian methods in machine learning will
likely increase to generate insights into uncertainty and for use cases that require
transparent rather than black-box models in particular.

Bayesian Machine Learning Chapter 9

[272]

In this section, we will introduce the popular PyMC3 library, which implements advanced
MCMC sampling and Variational Inference for machine learning models using Python.
Together with Stan, named after Stanislaw Ulam, who invented the Monte Carlo method,
and developed by Andrew Gelman at Columbia University since 2012, it is the most
popular probabilistic programming language.

Bayesian machine learning with Theano
PyMC3 was released in January 2017 to add Hamiltonian MC methods to the Metropolis-
Hastings sampler that's used in PyMC2 (released in 2012). PyMC3 uses Theano as its
computational backend for dynamic C compilation and automatic differentiation. Theano is
a matrix-focused and GPU-enabled optimization library that was developed at Yoshua
Bengio's Montreal Institute for Learning Algorithms (MILA) and inspired TensorFlow.
MILA recently ceased to further develop Theano due to the success of newer deep learning
libraries (see Chapter 16 Deep Learning for details). PyMC4, which is planned for 2019, will
use TensorFlow instead, with presumably limited impact on the API.

The PyMC3 workflow
PyMC3 aims for intuitive and readable, yet powerful syntax that reflects how statisticians
describe models. The modeling process generally follows these five steps:

Encode a probability model by defining the following:1.
The prior distributions that quantify knowledge and uncertainty about1.
latent variables
The likelihood function that conditions the parameters on observed2.
data

 Analyze the posterior using one of the options described in the previous section:2.
Obtain a point estimate using MAP inference1.
Sample from the posterior using MCMC methods2.

Approximate the posterior using variational Bayes.3.
Check your model using various diagnostic tools.4.
Generate predictions.5.

The resulting model can be used for inference to gain detailed insights into parameter
values as well as to predict outcomes for new data points.

Bayesian Machine Learning Chapter 9

[273]

We will illustrate this workflow using simple logistic regression (see the notebook
bayesian_logistic_regression). Subsequently, we will use PyMC3 to compute and compare
Bayesian Sharpe ratios, estimate dynamic pairs trading ratios, and implement Bayesian
linear time series models.

Model definition – Bayesian logistic regression
As discussed in Chapter 6, Machine Learning Workflow, logistic regression estimates a linear
relationship between a set of features and a binary outcome, which is mediated by a
sigmoid function to ensure that the model produces probabilities. The frequentist approach
resulted in point estimates for the parameters that measure the influence of each feature on
the probability that a data point belongs to the positive class, with confidence intervals
based on assumptions about the parameter distribution.

In contrast, Bayesian logistic regression estimates the posterior distribution over the
parameters itself. The posterior allows for more robust estimates of what is called a
Bayesian credible interval for each parameter, with the benefit of more transparency about
the model's uncertainty.

A probabilistic program consists of observed and unobserved random variables (RVs). As
we have discussed, we define the observed RVs via likelihood distributions and
unobserved RVs via prior distributions. PyMC3 includes numerous probability
distributions for this purpose.

We will use a simple dataset that classifies 30,000 individuals by income using a threshold
of $50K per year. This dataset will contain information on age, sex, hours worked, and
years of education. Hence, we are modeling the probability that an individual earns more
than $50K using these features.

The PyMC3 library makes it very straightforward to perform approximate Bayesian
inference for logistic regression. Logistic regression models the probability that individual i
earns a high income based on k features, as outlined on the left-hand side of the following
diagram:

Bayesian Machine Learning Chapter 9

[274]

We will use the context manager with to define a manual_logistic_model that we can
refer to later as a probabilistic model:

The random variables for the unobserved parameters for intercept and two1.
features are expressed using uninformative priors that assume normal
distributions with a mean of 0 and a standard deviation of 100.
The likelihood combines the parameters with the data according to the2.
specification of the logistic regression.
The outcome is modeled as a Bernoulli RV with success probability given by the3.
likelihood:

with pm.Model() as manual_logistic_model:
 # coefficients as rvs with uninformative priors
 intercept = pm.Normal('intercept', 0, sd=100)
 b1 = pm.Normal('beta_1', 0, sd=100)
 b2 = pm.Normal('beta_2', 0, sd=100)

 # Likelihood transforms rvs into probabilities p(y=1)
 # according to logistic regression model.
 likelihood = pm.invlogit(intercept + b1 * data.hours + b2 * data.educ)

 # Outcome as Bernoulli rv with success probability
 # given by sigmoid function conditioned on actual data
 pm.Bernoulli(name='logit', p=likelihood, observed=data.income)

Visualization and plate notation
The pm.model_to_graphviz(manual_logistic_model) command produces the plate
notation displayed in the preceding diagram on the right. It shows the unobserved
parameters as light and the observed elements as dark circles. The rectangle indicates the
number of repetitions of the observed model element implied by the data included in the
model definition.

Bayesian Machine Learning Chapter 9

[275]

The Generalized Linear Models module
PyMC3 includes numerous common models so that we can usually leave the manual
specification for custom applications. The following code defines the same logistic
regression as a member of the Generalized Linear Models (GLM) family using the formula
format inspired by the statistical language R that's ported to Python by the patsy library:

with pm.Model() as logistic_model:
 pm.glm.GLM.from_formula('income ~ hours + educ',
 data,
 family=pm.glm.families.Binomial())

MAP inference
We obtain point MAP estimates for the three parameters using the just defined model's
.find_MAP() method:

with logistic_model:
 map_estimate = pm.find_MAP()
print_map(map_estimate)
Intercept -6.561862
hours 0.040681
educ 0.350390

PyMC3 solves the optimization problem of finding the posterior point with the highest
density using the quasi-Newton Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm,
but offers several alternatives, which are provided by the sciPy library. The result is
virtually identical to the corresponding statsmodels estimate (see the notebook for more
information).

Approximate inference – MCMC
We will use a slightly more complicated model to illustrate Markov chain Monte Carlo
inference:

formula = 'income ~ sex + age+ I(age ** 2) + hours + educ'

Patsy's function, I(), allows us to use regular Python expressions to create new variables
on the fly. Here, we square age to capture the non-linear relationship that more experience
adds less income later in life.

Note that variables measured on very different scales can slow down the sampling process.
Hence, we first apply sklearn's scale() function to standardize the age, hours, and educ
variables.

Bayesian Machine Learning Chapter 9

[276]

Once we have defined our model with the new formula, we are ready to perform inference
to approximate the posterior distribution. MCMC sampling algorithms are available
through the pm.sample() function.

By default, PyMC3 automatically selects the most efficient sampler and initializes the
sampling process for efficient convergence. For a continuous model, PyMC3 chooses the
NUTS sampler that we discussed in the previous section. It also runs variational inference
via ADVI to find good starting parameters for the sampler. One among several alternatives
is to use the MAP estimate.

To see what convergence looks like, we first draw only 100 samples after tuning the
sampler for 1000 iterations. This will be discarded afterwards. The sampling process can be
parallelized for multiple chains using the cores argument (except when using GPU):

with logistic_model:
 trace = pm.sample(draws=100, tune=1000,
 init='adapt_diag', # alternative initialization
 chains=4, cores=2,
 random_seed=42)

The resulting trace contains the sampled values for each random variable. We can continue
sampling by providing the trace of a prior run as input (see the notebook for more
information).

Credible intervals
We can compute the credible intervals—the Bayesian counterpart of confidence
intervals—as percentiles of the trace. The resulting boundaries reflect confidence about the
range of the parameter value for a given probability threshold, as opposed to the number of
times the parameter will be within this range for a large number of trials. The notebook
illustrates computation and visualization.

Approximate inference – variational Bayes
The interface for variational inference is very similar to the MCMC implementation. We just
use the fit() function instead of the sample() function, with the option to include an
early stopping CheckParametersConvergence callback if the distribution-fitting process
converged up to a given tolerance:

with logistic_model:
 callback = CheckParametersConvergence(diff='absolute')
 approx = pm.fit(n=100000,
 callbacks=[callback])

Bayesian Machine Learning Chapter 9

[277]

We can draw samples from the approximated distribution to obtain a trace object like we
did previously for the MCMC sampler:

trace_advi = approx.sample(10000)

Inspection of the trace summary shows that the results are slightly less accurate.

Model diagnostics
Bayesian model diagnostics includes validating that the sampling process has converged
and consistently samples from high probability areas of the posterior, and confirming that
the model represents the data well.

Convergence
We can visualize the samples over time and their distributions to check the quality of the
results. The following charts show the posterior distributions after an initial 100 and an
additional 100,000 samples, respectively, and illustrate how convergence implies that
multiple chains identify the same distribution. The pm.trace_plot() function shows the
evolution of the samples as well (see the notebook for more information):

Posterior distributions

PyMC3 produces various summary statistics for a sampler. These are available as
individual functions in the stats module, or by providing a trace to the pm.summary()
function:

statsmodels mean sd hpd_2.5 hpd_97.5 n_eff Rhat
Intercept -1.97 -1.97 0.04 -2.04 -1.89 69,492.17 1.00

Bayesian Machine Learning Chapter 9

[278]

sex[T. Male] 1.20 1.20 0.04 1.12 1.28 72,374.10 1.00
age 1.10 1.10 0.03 1.05 1.15 68,446.73 1.00
I(age ** 2) -0.54 -0.54 0.02 -0.58 -0.50 66,539.66 1.00
hours 0.32 0.32 0.02 0.28 0.35 93,008.86 1.00
educ 0.84 0.84 0.02 0.80 0.87 98,125.26 1.00

The preceding tables includes the (separately computed) statsmodels logit coefficients in
the first column to show that, in this simple case, both models agree because the sample
mean is very close to the coefficients.

The remaining columns contain the highest posterior density (HPD) estimate for the
minimum width credible interval, the Bayesian version of a confidence interval, which here
is computed at the 95% level. The n_eff statistic summarizes the number of effective (not
rejected) samples resulting from the ~100K draws.

R-hat, also known as the Gelman-Rubin statistic, checks convergence by comparing the
variance between chains to the variance within each chain. If the sampler converged, these
variances should be identical, that is, the chains should look similar. Hence, the statistic
should be near 1. The pm.forest_plot() function also summarizes this statistic for the
multiple chains (see the notebook for more information).

For high-dimensional models with many variables, it becomes cumbersome to inspect
numerous traces. When using NUTS, the energy plot helps to assess problems of
convergence. It summarizes how efficiently the random process explores the posterior. The
plot shows the energy and the energy transition matrix, which should be well-matched, as
in the following example (see references for conceptual detail):

Bayesian Machine Learning Chapter 9

[279]

Posterior Predictive Checks
Posterior Predictive Checks (PPCs) are very useful for examining how well a model fits the
data. They do so by generating data from the model using parameters from draws from the
posterior. We use the pm.sample_ppc function for this purpose and obtain n samples for
each observation (the GLM module automatically names the outcome 'y'):

ppc = pm.sample_ppc(trace_NUTS, samples=500, model=logistic_model)
ppc['y'].shape
(500, 29170)

We can evaluate the in-sample fit using the auc score, for example, to compare different
models:

roc_auc_score(y_score=np.mean(ppc['y'], axis=0),
 y_true=data.income)
0.8294958565103577

Prediction
Predictions use Theano's shared variables to replace the training data with test data before
running posterior predictive checks. To facilitate visualization, we create a variable with a
single predictor hours, create the train and test datasets, and convert the former to a shared
variable. Note that we need to use numPy arrays and provide a list of column labels (see
the notebook for details):

X_shared = theano.shared(X_train.values
with pm.Model() as logistic_model_pred:
 pm.glm.GLM(x=X_shared, labels=labels,
 y=y_train, family=pm.glm.families.Binomial())

We then run the sampler as before, and apply the pm.sample_ppc function to the resulting
trace after replacing the train with test data:

X_shared.set_value(X_test)
ppc = pm.sample_ppc(pred_trace, model=logistic_model_pred,
 samples=100)

The AUC score for this model with a single feature is 0.65. The following plot shows the
actual outcomes and uncertainty surrounding the predictions for each sampled predictor
value:

Bayesian Machine Learning Chapter 9

[280]

We will now illustrate how to apply Bayesian analysis to trading-related use cases.

Practical applications
There are numerous applications to Bayesian machine learning methods to investment. The
transparency that probabilistic estimates create are naturally useful for risk management
and performance evaluation. We will illustrate the computation and comparison of a metric
like the Sharpe ratio. The GitHub repository also includes two notebooks referenced below
that present the use of Bayesian ML for modeling linear time series and stochastic volatility.

These notebooks have been adapted from tutorials created at Quantopian where Thomas
Wiecki leads data science and has significantly contributed to popularizing the use of
Bayesian methods. The references also include a tutorial on using Bayesian ML to estimate
pairs trading hedging ratios.

Bayesian Sharpe ratio and performance comparison
In this section, we will illustrate how to define the Sharpe ratio as a probability model and
compare the resulting posterior distributions for different return series. The Bayesian
estimation for two groups provides complete distributions of credible values for the effect
size, group means and their difference, standard deviations and their difference, and the
normality of the data.

Key use cases include the analysis of differences between alternative strategies, or between
a strategy's in-sample return in relation to its out-of-sample return (see the
bayesian_sharpe_ratio notebook for details). The Bayesian Sharpe ratio is also part of
pyfolio's Bayesian tearsheet.

Bayesian Machine Learning Chapter 9

[281]

Model definition
To model the Sharpe ratio as a probabilistic model, we need the priors about the
distribution of returns and the parameters that govern this distribution. The student t
distribution exhibits fat tails that are relative to the normal distribution for low degrees of
freedom (df), and is a reasonable choice to capture this aspect of returns.

Hence, we need to model the three parameters of this distribution, namely the mean and
standard deviation of returns, and the degrees of freedom. We'll assume normal and
uniform distributions for the mean and the standard deviation, respectively, and an
exponential distribution for the df with a sufficiently low expected value to ensure fat tails.
Returns are based on these probabilistic inputs, and the annualized Sharpe ratio results
from the standard computation, ignoring a risk-free rate (using daily returns):

mean_prior = data.stock.mean()
std_prior = data.stock.std()
std_low = std_prior / 1000
std_high = std_prior * 1000

with pm.Model() as sharpe_model:
 mean = pm.Normal('mean', mu=mean_prior, sd=std_prior)
 std = pm.Uniform('std', lower=std_low, upper=std_high)
 nu = pm.Exponential('nu_minus_two', 1 / 29, testval=4) + 2.
 returns = pm.StudentT('returns', nu=nu, mu=mean, sd=std,
observed=data.stock)

 sharpe = returns.distribution.mean / returns.distribution.variance **
.5 * np.sqrt(252)
 pm.Deterministic('sharpe', sharpe)

The notebook contains details on sampling and evaluating the Sharpe ratio for a single
stock.

Performance comparison
To compare the performance of two return series, we model each group's Sharpe ratio
separately and compute the effect size as the difference between the volatility-adjusted
returns. Visualizing the traces reveals granular performance insights into the distributions
of each metric, as illustrated by the following chart:

Bayesian Machine Learning Chapter 9

[282]

Bayesian Linear Regression for Pairs Trading

In the last chapter, we introduced pairs trading as a popular algorithmic trading strategy
that relies on the cointegration of two or more assets. Given such assets, we need to
estimate the hedging ratio to decide on the relative magnitude of long and short positions.
A basic approach uses linear regression.

The linear_regression notebook illustrates how Bayesian linear regression tracks
changes in the relationship between two assets over time.

Bayesian time series models
PyMC3 includes AR(p) models that allow us to gain similar insights into the parameter
uncertainty, as for the previous models. The bayesian_time_series notebook illustrates
a time series model for one or more lags.

Bayesian Machine Learning Chapter 9

[283]

Stochastic volatility models
As discussed in the last chapter, asset prices have time-varying volatility. In some periods,
returns are highly variable, while in others, they are very stable. Stochastic volatility models
model this with a latent volatility variable, which is modeled as a stochastic process. The
No-U-Turn sampler was introduced using such a model, and the
stochastic_volatility notebook illustrates this use case.

Summary
In this chapter, we explored Bayesian approaches to machine learning. We saw that they
have several advantages, including the ability to encode prior knowledge or opinions,
deeper insights into the uncertainty surrounding model estimates and predictions, and the
suitability for online learning, where each training sample incrementally impacts the
model's prediction.

We learned to apply the Bayesian workflow from model specification to estimation,
diagnostics, and prediction using PyMC3 and explored several relevant applications. We
will encounter more Bayesian models in Chapter 14, Topic Modeling and in Chapter 19 on
unsupervised deep learning where we will introduce variational autoencoders.

The next two chapter introduce tree-based, non-linear ensemble models, namely random
forests and gradient boosting machines.

10
Decision Trees and Random

Forests
In this chapter, we will learn about two new classes of machine learning models: decision
trees and random forests. We will see how decision trees learn rules from data that encodes
non-linear relationships between the input and the output variables. We will illustrate how
to train a decision tree and use it for prediction for regression and classification problems,
visualize and interpret the rules learned by the model, and tune the model's
hyperparameters to optimize the bias-variance tradeoff and prevent overfitting. Decision
trees are not only important standalone models but are also frequently used as components
in other models.

In the second part of this chapter, we will introduce ensemble models that combine
multiple individual models to produce a single aggregate prediction with lower prediction-
error variance. We will illustrate bootstrap aggregation, often called bagging, as one of
several methods to randomize the construction of individual models and reduce the
correlation of the prediction errors made by an ensemble's components.

Boosting is a very powerful alternative method that merits its own chapter to address a
range of recent developments. We will illustrate how bagging effectively reduces the
variance, and learn how to configure, train, and tune random forests. We will see how
random forests as an ensemble of a large number of decision trees, can dramatically reduce
prediction errors, at the expense of some loss in interpretation.

In short, in this chapter, we will cover the following:

How to use decision trees for regression and classification
How to gain insights from decision trees and visualize the decision rules learned
from the data
Why ensemble models tend to deliver superior results
How bootstrap aggregation addresses the overfitting challenges of decision trees
How to train, tune, and interpret random forests

Decision Trees and Random Forests Chapter 10

[285]

Decision trees
Decision trees are a machine learning algorithm that predicts the value of a target variable
based on decision rules learned from training data. The algorithm can be applied to both
regression and classification problems by changing the objective function that governs how
the tree learns the decision rules.

We will discuss how decision trees use rules to make predictions, how to train them to
predict (continuous) returns as well as (categorical) directions of price movements, and
how to interpret, visualize, and tune them effectively.

How trees learn and apply decision rules
The linear models we studied in Chapters 7, Linear Models and Chapter 8, Time Series
Models, learn a set of parameters to predict the outcome using a linear combination of the
input variables, possibly after transformation by an S-shaped link function in the case of
logistic regression.

Decision trees take a different approach: they learn and sequentially apply a set of rules
that split data points into subsets and then make one prediction for each subset. The
predictions are based on the outcome values for the subset of training samples that result
from the application of a given sequence of rules. As we will see in more detail further,
classification trees predict a probability estimated from the relative class frequencies or the
value of the majority class directly, whereas regression models compute prediction from
the mean of the outcome values for the available data points.

Each of these rules relies on one particular feature and uses a threshold to split the samples
into two groups with values either below or above the threshold with respect to this
feature. A binary tree naturally represents the logic of the model: the root is the starting
point for all samples, nodes represent the application of the decision rules, and the data
moves along the edges as it is split into smaller subsets until arriving at a leaf node where
the model makes a prediction.

For a linear model, the parameter values allow for an interpretation of the impact of the
input variables on the output and the model's prediction. In contrast, for a decision tree, the
path from the root to the leaves creates transparency about how the features and their
values lead to specific decisions by the model.

Decision Trees and Random Forests Chapter 10

[286]

The following figure highlights how the model learns a rule. During training, the algorithm
scans the features and, for each feature, seeks to find a cutoff that splits the data to
minimize the loss that results from predictions made using the subsets that would result
from the split, weighted by the number of samples in each subset:

To build an entire tree during training, the learning algorithm repeats this process of
dividing the feature space, that is, the set of possible values for the p input variables, X1,
X2, ..., Xp, into mutually-exclusive and collectively-exhaustive regions, each represented by
a leaf node. Unfortunately, the algorithm will not be able to evaluate every possible
partition of the feature space given the explosive number of possible combinations of
sequences of features and thresholds. Tree-based learning takes a top-down, greedy
approach, known as recursive binary splitting to overcome this computational limitation.

This process is recursive because it uses subsets of data resulting from prior splits. It is top-
down because it begins at the root node of the tree, where all observations still belong to a
single region and then successively creates two new branches of the tree by adding one
more split to the predictor space. It is greedy because the algorithm picks the best rule in
the form of a feature-threshold combination based on the immediate impact on the
objective function rather than looking ahead and evaluating the loss several steps ahead.
We will return to the splitting logic in the more specific context of regression and
classification trees because this represents the major difference.

Decision Trees and Random Forests Chapter 10

[287]

The number of training samples continues to shrink as recursive splits add new nodes to
the tree. If rules split the samples evenly, resulting in a perfectly balanced tree with an
equal number of children for every node, then there would be 2n nodes at level n, each
containing a corresponding fraction of the total number of observations. In practice, this is
unlikely, so the number of samples along some branches may diminish rapidly, and trees
tend to grow to different levels of depth along different paths.

To arrive at a prediction for a new observation, the model uses the rules that it inferred
during training to decide which leaf node the data point should be assigned to, and then
uses the mean (for regression) or the mode (for classification) of the training observations in
the corresponding region of the feature space. A smaller number of training samples in a
given region of the feature space, that is, in a given leaf node, reduces the confidence in the
prediction and may reflect overfitting.

Recursive splitting would continue until each leaf node contains only a single sample and
the training error has been reduced to zero. We will introduce several criteria to limit splits
and prevent this natural tendency of decision trees to produce extreme overfitting.

How to use decision trees in practice
In this section, we illustrate how to use tree-based models to gain insight and make
predictions. To demonstrate regression trees we predict returns, and for
the classification case, we return to the example of positive and negative asset price moves.
The code examples for this section are in the notebook decision_trees unless stated
otherwise.

How to prepare the data
We use a simplified version of the data set constructed in Chapter 4, Alpha Factor Research. It
consists of daily stock prices provided by Quandl for the 2010-2017 period and various
engineered features. The details can be found in the data_prep notebook in the GitHub
repo for this chapter. The decision tree models in this chapter are not equipped to handle
missing or categorical variables, so we will apply dummy encoding to the latter after
dropping any of the former.

Decision Trees and Random Forests Chapter 10

[288]

How to code a custom cross-validation class
We also construct a custom cross-validation class tailored to the format of the data just
created, which has pandas MultiIndex with two levels, one for the ticker and one for the
data:

class OneStepTimeSeriesSplit:
 """Generates tuples of train_idx, test_idx pairs
 Assumes the index contains a level labeled 'date'"""

 def __init__(self, n_splits=3, test_period_length=1, shuffle=False):
 self.n_splits = n_splits
 self.test_period_length = test_period_length
 self.shuffle = shuffle
 self.test_end = n_splits * test_period_length

 @staticmethod
 def chunks(l, chunk_size):
 for i in range(0, len(l), chunk_size):
 yield l[i:i + chunk_size]

 def split(self, X, y=None, groups=None):
 unique_dates = (X.index
 .get_level_values('date')
 .unique()
 .sort_values(ascending=False)[:self.test_end])

 dates = X.reset_index()[['date']]
 for test_date in self.chunks(unique_dates,
self.test_period_length):
 train_idx = dates[dates.date < min(test_date)].index
 test_idx = dates[dates.date.isin(test_date)].index
 if self.shuffle:
 np.random.shuffle(list(train_idx))
 yield train_idx, test_idx

OneStepTimeSeriesSplit ensures a split of training and validation sets that avoids a
lookahead bias by training models using only data up to period T-1 for each stock when
validating using data for month T. We will only use one-step-ahead forecasts.

How to build a regression tree
Regression trees make predictions based on the mean outcome value for the training
samples assigned to a given node and typically rely on the mean-squared error to select
optimal rules during recursive binary splitting.

Decision Trees and Random Forests Chapter 10

[289]

Given a training set, the algorithm iterates over the predictors, X1, X2, ..., Xp, and possible
cutpoints, s1, s1, ..., sN, to find an optimal combination. The optimal rule splits the feature
space into two regions, {X|Xi < sj} and {X|Xi > sj}, with values for the Xi feature either below
or above the sj threshold so that predictions based on the training subsets maximize the
reduction of the squared residuals relative to the current node.

Let's start with a simplified example to facilitate visualization and only use two months of
lagged returns to predict the following month, in the vein of an AR(2) model from the last
chapter:

Using sklearn, configuring and training a regression tree is very straightforward:

from sklearn.tree import DecisionTreeRegressor

configure regression tree
regression_tree = DecisionTreeRegressor(criterion='mse', # default
 max_depth=4, # up to 4 splits
 random_state=42)
Create training data
y = data.returns
X = data.drop('returns', axis=1)
X2 = X.loc[:, ['t-1', 't-2']]

fit model
regression_tree.fit(X=X2, y=y)

fit OLS model
ols_model = sm.OLS(endog=y, exog=sm.add_constant(X2)).fit()

The OLS summary and a visualization of the first two levels of the decision tree reveal the
striking differences between the model. The OLS model provides three parameters for the
intercepts and the two features in line with the linear assumption this model makes about
the f function.

In contrast, the regression tree chart displays, for each node of the first two levels, the
feature and threshold used to split the data (note that features can be used repeatedly), as
well as the current value of the mean-squared error (MSE), the number of samples, and
predicted value based on these training samples:

Decision Trees and Random Forests Chapter 10

[290]

The regression tree chart

The tree chart also highlights the uneven distribution of samples across the nodes as the
numbers vary between 28,000 and 49,000 samples after only two splits.

To further illustrate the different assumptions about the functional form of the relationships
between the input variables and the output, we can visualize current return predictions as a
function of the feature space, that is, as a function of the range of values for the lagged
returns. The following figure shows the current period return as a function of returns one
and two periods ago for linear regression and the regression tree:

The linear-regression model result on the right side underlines the linearity of the
relationship between lagged and current returns, whereas the regression tree chart on the
left illustrates the non-linear relationship encoded in the recursive partitioning of the
feature space.

Decision Trees and Random Forests Chapter 10

[291]

How to build a classification tree
A classification tree works just like the regression version, except that categorical nature of
the outcome requires a different approach to making predictions and measuring the loss.
While a regression tree predicts the response for an observation assigned to a leaf
node using the mean outcome of the associated training samples, a classification tree
instead uses the mode, that is, the most common class among the training samples in the
relevant region. A classification tree can also generate probabilistic predictions based on
relative class frequencies.

How to optimize for node purity
When growing a classification tree, we also use recursive binary splitting but, instead of
evaluating the quality of a decision rule using the reduction of the mean-squared error, we
can use the classification error rate, which is simply the fraction of the training samples in a
given (leave) node that do not belong to the most common class.

However, the alternative measures, Gini Index or Cross-Entropy, are preferred because
they are more sensitive to node purity than the classification error rate. Node purity refers
to the extent of the preponderance of a single class in a node. A node that only contains
samples with outcomes belonging to a single class is pure and imply successful
classification for this particular region of the feature space. They are calculated as
follows for a classification outcome taking on K values, 0,1,…,K-1, for a given node, m, that
represents a region, Rm, of the feature space and where pmk is the proportion of outcomes of
the k class in the m node:

Both the Gini Impurity and the Cross-Entropy measure take on smaller values when the
class proportions approach zero or one, that is, when the child nodes become pure as a
result of the split and are highest when the class proportions are even or 0.5 in the binary
case. The chart at the end of this section visualizes the values assumed by these two
measures and the misclassification error rates across the [0, 1] interval of proportions.

Decision Trees and Random Forests Chapter 10

[292]

How to train a classification tree
We will now train, visualize, and evaluate a classification tree with up to 5 consecutive
splits using 80% of the samples for training to predict the remaining 20%. We are taking a
shortcut here to simplify the illustration and use the built-in train_test_split, which
does not protect against lookahead bias, as our custom iterator. The tree configuration
implies up to 25=32 leaf nodes that, on average in the balanced case, would contain over
4,300 of the training samples. Take a look at the following code:

randomize train-test split
X_train, X_test, y_train, y_test = train_test_split(X, y_binary,
test_size=0.2, random_state=42)

configure & train tree learner
classifier = DecisionTreeClassifier(criterion='gini',
 max_depth=5,
 random_state=42)
classifier.fit(X=X_train, y=y_train)

Output:
DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=5,
 max_features=None, max_leaf_nodes=None,
 min_impurity_decrease=0.0, min_impurity_split=None,
 min_samples_leaf=1, min_samples_split=2,
 min_weight_fraction_leaf=0.0, presort=False, random_state=42,
 splitter='best')

The output after training the model displays all the DecisionTreeClassifier
parameters that we will address in more detail in the next section when we discuss
parameter-tuning.

How to visualize a decision tree
You can visualize the tree using the graphviz library (see GitHub for installation
instructions) because sklearn can output a description of the tree using the .dot language
used by that library. You can configure the output to include feature and class labels and
limit the number of levels to keep the chart readable, as follows:

dot_data = export_graphviz(classifier,
 out_file=None, # opt. save to file and convert
to png
 feature_names=X.columns,
 class_names=['Down', 'Up'],
 max_depth=3,
 filled=True,

Decision Trees and Random Forests Chapter 10

[293]

 rounded=True,
 special_characters=True)

graphviz.Source(dot_data)

The result shows that the model uses a variety of different features and indicates the split
rules for both continuous and categorical (dummy) variables. The chart displays, under the
label value, the number of samples from each class and, under the label class, the most
common class (there were more up months during the sample period):

How to evaluate decision tree predictions
To evaluate the predictive accuracy of our first classification tree, we will use our test set to
generate predicted class probabilities, as follows:

y_score = classifier.predict_proba(X=X_test)[:, 1] # only keep
probabilities for pos. class

The .predict_proba() method produces one probability for each class. In the binary
class, these probabilities are complementary and sum to 1, so we only need the value for the
positive class. To evaluate the generalization error, we will use the area under the curve
based on the receiver-operating characteristic that we introduced in Chapter 6, The Machine
Learning Process. The result indicates a significant improvement above and beyond the
baseline value of 0.5 for a random prediction:

roc_auc_score(y_score=y_score, y_true=y_test)
0.5941

Decision Trees and Random Forests Chapter 10

[294]

Feature importance
Decision trees can not only be visualized to inspect the decision path for a given feature,
but also provide a summary measure of the contribution of each feature to the model fit to
the training data.

The feature importance captures how much the splits produced by the feature helped to
optimize the model's metric used to evaluate the split quality, which in our case is the Gini
Impurity index. A feature's importance is computed as the (normalized) total reduction of
this metric and takes into account the number of samples affected by a split. Hence, features
used earlier in the tree where the nodes tend to contain more samples typically are
considered of higher importance.

The following chart shows the feature importance for the top 15 features:

Overfitting and regularization
Decision trees have a strong tendency to overfit, especially when a dataset has a large
number of features relative to the number of samples. As discussed in previous chapters,
overfitting increases the prediction error because the model does not only learn the signal
contained in the training data, but also the noise.

There are several ways to address the risk of overfitting:

Dimensionality reduction (Chapter 12, Unsupervised Learning) improves the
feature-to-sample ratio by representing the existing features with fewer, more
informative, and less noisy features.

Decision Trees and Random Forests Chapter 10

[295]

Ensemble models, such as random forests, combine multiple trees while
randomizing the tree construction, as we will see in the second part of this
chapter.
Decision trees provide several regularization hyperparameters to limit the
growth of a tree and the associated complexity. While every split increases the
number of nodes, it also reduces the number of samples available per node to
support a prediction. For each additional level, twice the number of samples is
needed to populate the new nodes with the same sample density.
Tree-pruning is an additional tool to reduce the complexity of a tree by
eliminating nodes or entire parts of a tree that add little value but increase the
model's variance. Cost-complexity-pruning, for instance, starts with a large tree
and recursively reduces its size by replacing nodes with leaves, essentially
running the tree construction in reverse. The various steps produce a sequence of
trees that can then be compared using cross-validation to select the ideal size.

How to regularize a decision tree
The following table lists key parameters available for this purpose in the sklearn decision
tree implementation. After introducing the most important parameters, we will illustrate
how to use cross-validation to optimize the hyperparameter settings with respect to the
bias-variance tradeoff and lower prediction errors:
Parameter Default Options Description

max_depth None int
Maximum number of levels: split nodes until reaching max_depth or all leaves are pure or contain
fewer than min_samples_split samples.

max_features None

None: all features; int
float: fraction
auto, sqrt: sqrt(n_features)
log2: log2(n_features)

Number of features to consider for a split.

max_leaf_nodes None None: unlimited number of leaf nodes
int Split nodes until creating this many leaves.

min_impurity_decrease 0 float Split node if impurity decreases by at least this value.

min_samples_leaf 1 int;
float (as a percentage of N)

Minimum number of samples to be at a leaf node. A split will only be considered if there are at
least min_samples_leaf training samples in each of the left and right branches. May smoothen the
model, especially for regression.

min_samples_split 2 int; float (percent of N) The minimum number of samples required to split an internal node:

min_weight_fraction_leaf 0 The minimum weighted fraction of the sum total of all sample weights needed at a leaf node. Samples
have equal weight unless sample_weight provided in fit method.

The max_depth parameter imposes a hard limit on the number of consecutive splits and
represents the most straightforward way to cap the growth of a tree.

Decision Trees and Random Forests Chapter 10

[296]

The min_samples_split and min_samples_leaf parameters are alternative, data-driven
ways to limit the growth of a tree. Rather than imposing a hard limit on the number of
consecutive splits, these parameters control the minimum number of samples required to
further split the data. The latter guarantees a certain number of samples per leaf, while the
former can create very small leaves if a split results in a very uneven distribution. Small
parameter values facilitate overfitting, while a high number may prevent the tree from
learning the signal in the data. The default values are often quite low, and you should use
cross-validation to explore a range of potential values. You can also use a float to indicate a
percentage as opposed to an absolute number.

The sklearn documentation contains additional details about how to use the various
parameters for different use cases; see GitHub references.

Decision tree pruning
Recursive binary-splitting will likely produce good predictions on the training set but tends
to overfit the data and produce poor generalization performance because it leads to overly
complex trees, reflected in a large number of leaf nodes or partitioning of the feature space.
Fewer splits and leaf nodes imply an overall smaller tree and often lead to better predictive
performance as well as interpretability.

One approach to limit the number of leaf nodes is to avoid further splits unless they yield
significant improvements of the objective metric. The downside of this strategy, however, is
that sometimes splits that result in small improvements enable more valuable splits later on
as the composition of the samples keeps changing.

Tree-pruning, in contrast, starts by growing a very large tree before removing or pruning
nodes to reduce the large tree to a less complex and overfit subtree. Cost-complexity-
pruning generates a sequence of subtrees by adding a penalty for adding leaf nodes to the
tree model and a regularization parameter, similar to the lasso and ridge linear-regression
models, that modulates the impact of the penalty. Applied to the large tree, an increasing
penalty will automatically produce a sequence of subtrees. Cross-validation of the
regularization parameter can be used to identify the optimal, pruned subtree.

This method is not yet available in sklearn; see references on GitHub for further details and
ways to manually implement pruning.

Decision Trees and Random Forests Chapter 10

[297]

How to tune the hyperparameters
Decision trees offer an array of hyperparameters to control and tune the training result.
Cross-validation is the most important tool to obtain an unbiased estimate of the
generalization error, which in turn permits an informed choice among the various
configuration options. sklearn offers several tools to facilitate the process of cross-validating
numerous parameter settings, namely the GridSearchCV convenience class that we will
illustrate in the next section. Learning curves also allow for diagnostics that evaluate
potential benefits of collecting additional data to reduce the generalization error.

GridsearchCV for decision trees
sklearn provides a method to define ranges of values for multiple hyperparameters. It
automates the process of cross-validating the various combinations of these parameter
values to identify the optimal configuration. Let's walk through the process of
automatically tuning your model.

The first step is to instantiate a model object and define a dictionary where the keywords
name the hyperparameters, and the values list the parameter settings to be tested:

clf = DecisionTreeClassifier(random_state=42)
param_grid = {'max_depth': range(10, 20),
 'min_samples_leaf': [250, 500, 750],
 'max_features': ['sqrt', 'auto']
 }

Then, instantiate the GridSearchCV object, providing the estimator object and parameter
grid, as well as a scoring method and cross-validation choice to the initialization method.
We'll use an object of our custom OneStepTimeSeriesSplit class, initialized to use ten
folds for the cv parameter, and set the scoring to the roc_auc metric. We can parallelize
the search using the n_jobs parameter and automatically obtain a trained model that uses
the optimal hyperparameters by setting refit=True.

With all settings in place, we can fit GridSearchCV just like any other model:

gridsearch_clf = GridSearchCV(estimator=clf,
 param_grid=param_grid,
 scoring='roc_auc',
 n_jobs=-1,
 cv=cv, # custom OneStepTimeSeriesSplit
 refit=True,
 return_train_score=True)

gridsearch_clf.fit(X=X, y=y_binary)

Decision Trees and Random Forests Chapter 10

[298]

The training process produces some new attributes for our GridSearchCV object, most
importantly the information about the optimal settings and the best cross-validation score
(now using the proper setup that avoids lookahead bias).

Setting max_depth to 13, min_samples_leaf to 500, and randomly selecting only a
number corresponding to the square root of the total number of features when deciding on
a split, produces the best results, with an AUC of 0.5855:

gridsearch_clf.best_params_
{'max_depth': 13, 'max_features': 'sqrt', 'min_samples_leaf': 500}

gridsearch_clf.best_score_
0.5855

The automation is quite convenient, but we also would like to inspect how the performance
evolves for different parameter values. Upon completion of this process,
the GridSearchCV object makes available detailed cross-validation results to gain more
insights.

How to inspect the tree structure
The notebook also illustrates how to run cross-validation more manually to obtain custom
tree attributes, such as the total number of nodes or leaf nodes associated with certain
hyperparameter settings. The following function accesses the internal .tree_ attribute to
retrieve information about the total node count, and how many of these nodes are leaf
nodes:

def get_leaves_count(tree):
 t = tree.tree_
 n = t.node_count
 leaves = len([i for i in range(t.node_count) if t.children_left[i]==
-1])
 return leaves

We can combine this information with the train and test scores to gain detailed knowledge
about the model behavior throughout the cross-validation process, as follows:

train_scores, val_scores, leaves = {}, {}, {}
for max_depth in range(1, 26):
 print(max_depth, end=' ', flush=True)
 clf = DecisionTreeClassifier(criterion='gini',
 max_depth=max_depth,
 min_samples_leaf=500,
 max_features='auto',
 random_state=42)

Decision Trees and Random Forests Chapter 10

[299]

 train_scores[max_depth], val_scores[max_depth], leaves[max_depth] = [],
[], []
 for train_idx, test_idx in cv.split(X):
 X_train, y_train, = X.iloc[train_idx], y_binary.iloc[train_idx]
 X_test, y_test = X.iloc[test_idx], y_binary.iloc[test_idx]
 clf.fit(X=X_train, y=y_train)

 train_pred = clf.predict_proba(X=X_train)[:, 1]
 train_score = roc_auc_score(y_score=train_pred, y_true=y_train)
 train_scores[max_depth].append(train_score)

 test_pred = clf.predict_proba(X=X_test)[:, 1]
 val_score = roc_auc_score(y_score=test_pred, y_true=y_test)
 val_scores[max_depth].append(val_score)
 leaves[max_depth].append(get_leaves_count(clf))

The result is shown on the left panel of the following chart. It highlights the in- and out-of-
sample performance across the range of max_depth settings, alongside a confidence
interval around the error metrics. It also shows the number of leaf nodes on the right-hand
log scale and indicates the best-performing setting at 13 consecutive splits, as indicated by
the vertical black line.

Learning curves
A learning curve is a useful tool that displays how the validation and training score evolve
as the number of training samples evolves.

The purpose of the learning curve is to find out whether and how much the model would
benefit from using more data during training. It is also useful to diagnose whether the
model's generalization error is more likely driven by bias or variance.

If, for example, both the validation score and the training score converge to a similarly low
value despite an increasing training set size, the error is more likely due to bias,
and additional training data is unlikely to help.

Decision Trees and Random Forests Chapter 10

[300]

Take a look at the following visualization:

Strengths and weaknesses of decision trees
Regression and classification trees take a very different approach to prediction when
compared to the linear models we have explored so far. How do you decide which model is
more suitable to the problem at hand? Consider the following:

If the relationship between the outcome and the features is approximately linear
(or can be transformed accordingly), then linear regression will likely outperform
a more complex method, such as a decision tree that does not exploit this linear
structure.
If the relationship appears highly non-linear and more complex, decision trees
will likely outperform the classical models.

Several advantages have made decision trees very popular:

They are fairly straightforward to understand and to interpret, not least because
they can be easily visualized and are thus more accessible to a non-technical
audience. Decision trees are also referred to as white-box models given the high
degree of transparency about how they arrive at a prediction. Black-box models,
such as ensembles and neural networks may deliver better prediction accuracy
but the decision logic is often much more challenging to understand and
interpret.
Decision trees require less data preparation than models that make stronger
assumptions about the data or are more sensitive to outliers and require data
standardization (such as regularized regression).

Decision Trees and Random Forests Chapter 10

[301]

Some decision tree implementations handle categorical input, do not require the
creation of dummy variables (improving memory efficiency), and can work with
missing values, as we will see in Chapter 11, Gradient Boosting Machines, but this
is not the case for sklearn.
Prediction is fast because it is logarithmic in the number of leaf nodes (unless the
tree becomes extremely unbalanced).
It is possible to validate the model using statistical tests and account for its
reliability (see GitHub references).

Decision trees also have several key disadvantages:

Decision trees have a built-in tendency to overfit to the training set and produce
a high generalization error. Key steps to address this weakness are pruning (not
yet supported by sklearn) as well as regularization using the various early-
stopping criteria outlined in the previous section.
Closely related is the high variance of decision trees that results from their ability
to closely adapt to a training set so that minor variations in the data can produce
wide swings in the structure of the decision trees and, consequently, the
predictions the model generates. The key mechanism to address the high
variance of decision trees is the use of an ensemble of randomized decision trees
that have low bias and produce uncorrelated prediction errors.
The greedy approach to decision-tree learning optimizes based on local criteria,
that is, to reduce the prediction error at the current node and does not guarantee
a globally optimal outcome. Again, ensembles consisting of randomized trees
help to mitigate this problem.
Decision trees are also sensitive to unbalanced class weights and may produce
biased trees. One option is to oversample the underrepresented or under-sample
the more frequent class. It is typically better, though, to use class weights and
directly adjust the objective function.

Random forests
Decision trees are not only useful for their transparency and interpretability but are also
fundamental building blocks for much more powerful ensemble models that combine
many individual trees with strategies to randomly vary their design to address the
overfitting and high variance problems discussed in the preceding section.

Decision Trees and Random Forests Chapter 10

[302]

Ensemble models
Ensemble learning involves combining several machine learning models into a single new
model that aims to make better predictions than any individual model. More specifically,
an ensemble integrates the predictions of several base estimators trained using one or more
given learning algorithms to reduce the generalization error that these models may produce
on their own.

For ensemble learning to achieve this goal, the individual models must be:

Accurate: They outperform a naive baseline (such as the sample mean or class
proportions)
Independent: Their predictions are generated differently to produce different
errors

Ensemble methods are among the most successful machine learning algorithms, in
particular for standard numerical data. Large ensembles are very successful in machine
learning competitions and may consist of many distinct individual models that have been
combined by hand or using another machine learning algorithm.

There are several disadvantages to combining predictions made by different models. These
include reduced interpretability, and higher complexity and cost of training, prediction,
and model maintenance. As a result, in practice (outside of competitions), the small gains in
accuracy from large-scale ensembling may not be worth the added costs.

There are two groups of ensemble methods that are typically distinguished depending on
how they optimize the constituent models and then integrate the results for a single
ensemble prediction:

Averaging methods train several base estimators independently and then
average their predictions. If the base models are not biased and make different
prediction errors that are not highly correlated, then the combined prediction
may have lower variance and can be more reliable. This resembles the
construction of a portfolio from assets with uncorrelated returns to reduce the
volatility without sacrificing the return.

Boosting methods, in contrast, train base estimators sequentially with the
specific goal to reduce the bias of the combined estimator. The motivation is to
combine several weak models into a powerful ensemble.

We will focus on automatic averaging methods in the remainder of this chapter, and
boosting methods in Chapter 11, Gradient Boosting Machines.

Decision Trees and Random Forests Chapter 10

[303]

How bagging lowers model variance
We saw that decision trees are likely to make poor predictions due to high variance, which
implies that the tree structure is quite sensitive to the composition of the training sample.
We have also seen that a model with low variance, such as linear regression, produces
similar estimates despite different training samples as long as there are sufficient samples
given the number of features.

For a given a set of independent observations, each with a variance of σ2, the standard error
of the sample mean is given by σ/n. In other words, averaging over a larger set of
observations reduces the variance. A natural way to reduce the variance of a model and its
generalization error would thus be to collect many training sets from the population, train a
different model on each dataset, and average the resulting predictions.

In practice, we do not typically have the luxury of many different training sets. This is
where bagging, short for bootstrap aggregation, comes in. Bagging is a general-purpose
method to reduce the variance of a machine learning model, which is particularly useful
and popular when applied to decision trees.

Bagging refers to the aggregation of bootstrap samples, which are random samples with
replacement. Such a random sample has the same number of observations as the original
dataset but may contain duplicates due to replacement.

Bagging increases predictive accuracy but decreases model interpretability because it's no
longer possible to visualize the tree to understand the importance of each feature. As an
ensemble algorithm, bagging methods train a given number of base estimators on these
bootstrapped samples and then aggregate their predictions into a final ensemble
prediction.

Bagging reduces the variance of the base estimators by randomizing how, for example,
each tree is grown and then averages the predictions to reduce their generalization error. It
is often a straightforward approach to improve on a given model without the need to
change the underlying algorithm. It works best with complex models that have low bias
and high variance, such as deep decision trees, because its goal is to limit overfitting.
Boosting methods, in contrast, work best with weak models, such as shallow decision trees.

Decision Trees and Random Forests Chapter 10

[304]

There are several bagging methods that differ by the random sampling process they apply
to the training set:

Pasting draws random samples from the training data without replacement,
whereas bagging samples with replacement
Random subspaces randomly sample from the features (that is, the columns)
without replacement
Random patches train base estimators by randomly sampling both observations
and features

Bagged decision trees
To apply bagging to decision trees, we create bootstrap samples from our training data by
repeatedly sampling with replacement, then train one decision tree on each of these
samples, and create an ensemble prediction by averaging over the predictions of the
different trees.

Bagged decision trees are usually grown large, that is, have many levels and leaf nodes and
are not pruned so that each tree has low bias but high variance. The effect of averaging their
predictions then aims to reduce their variance. Bagging has been shown to substantially
improve predictive performance by constructing ensembles that combine hundreds or even
thousands of trees trained on bootstrap samples.

To illustrate the effect of bagging on the variance of a regression tree, we can use
the BaggingRegressor meta-estimator provided by sklearn. It trains a user-defined base
estimator based on parameters that specify the sampling strategy:

max_samples and max_features control the size of the subsets drawn from the
rows and the columns, respectively
bootstrap and bootstrap_features determine whether each of these
samples is drawn with or without replacement

The following example uses an exponential function to generate training samples for a
single DecisionTreeRegressor and a BaggingRegressor ensemble that consists of ten
trees, each grown ten levels deep. Both models are trained on the random samples and
predict outcomes for the actual function with added noise.

Decision Trees and Random Forests Chapter 10

[305]

Since we know the true function, we can decompose the mean-squared error into bias,
variance, and noise, and compare the relative size of these components for both models
according to the following breakdown:

For 100 repeated random training and test samples of 250 and 500 observations each, we
find that the variance of the predictions of the individual decision tree is almost twice as
high as that for the small ensemble of 10 bagged trees based on bootstrapped samples:

noise = .5 # noise relative to std(y)
noise = y.std() * noise_to_signal

X_test = choice(x, size=test_size, replace=False)

max_depth = 10
n_estimators=10

tree = DecisionTreeRegressor(max_depth=max_depth)
bagged_tree = BaggingRegressor(base_estimator=tree,
n_estimators=n_estimators)
learners = {'Decision Tree': tree, 'Bagging Regressor': bagged_tree}

predictions = {k: pd.DataFrame() for k, v in learners.items()}
for i in range(reps):
 X_train = choice(x, train_size)
 y_train = f(X_train) + normal(scale=noise, size=train_size)
 for label, learner in learners.items():
 learner.fit(X=X_train.reshape(-1, 1), y=y_train)
 preds = pd.DataFrame({i: learner.predict(X_test.reshape(-1, 1))},
index=X_test)
 predictions[label] = pd.concat([predictions[label], preds], axis=1)

For each model, the following plot shows the mean prediction and a band of two standard
deviations around the mean for both models in the upper panel, and the bias-variance-
noise breakdown based on the values for the true function in the bottom panel:

Decision Trees and Random Forests Chapter 10

[306]

See the notebook random_forest for implementation details.

How to build a random forest
The random forest algorithm expands on the randomization introduced by the bootstrap
samples generated by bagging to reduce variance further and improve predictive
performance.

In addition to training each ensemble member on bootstrapped training data, random
forests also randomly sample from the features used in the model (without replacement).
Depending on the implementation, the random samples can be drawn for each tree or each
split. As a result, the algorithm faces different options when learning new rules, either at
the level of a tree or for each split.

The sizes of the feature samples differ for regression and classification trees:

For classification, the sample size is typically the square root of the number of
features.
For regression, it can be anywhere from one-third to all features and should be
selected based on cross-validation.

Decision Trees and Random Forests Chapter 10

[307]

The following diagram illustrates how random forests randomize the training of individual
trees and then aggregate their predictions into an ensemble prediction:

The goal of randomizing the features in addition to the training observations is to further
de-correlate the prediction errors of the individual trees. All features are not created equal,
and a small number of highly relevant features will be selected much more frequently and
earlier in the tree-construction process, making decision trees more alike across the
ensemble. However, the less the generalization errors of individual trees correlate, the more
the overall variance will be reduced.

How to train and tune a random forest
The key configuration parameters include the various hyperparameters for the individual
decision trees introduced in the section How to tune the hyperparameters. The following tables
lists additional options for the two RandomForest classes:

Keyword Default Description
bootstrap True Bootstrap samples during training.
n_estimators 10 Number of trees in the forest.
oob_score False Uses out-of-bag samples to estimate the R2 on unseen data.

Decision Trees and Random Forests Chapter 10

[308]

The bootstrap parameter activates in the preceding bagging algorithm outline, which in
turn enables the computation of the out-of-bag score (oob_score) that estimates
the generalization accuracy using samples not included in the bootstrap sample used to
train a given tree (see next section for detail).

The n_estimators parameter defines the number of trees to be grown as part of the forest.
Larger forests perform better, but also take more time to build. It is important to monitor
the cross-validation error as a function of the number of base learners to identify when the
marginal reduction of the prediction error declines and the cost of additional training
begins to outweigh the benefits.

The max_features parameter controls the size of the randomly selected feature subsets
available when learning a new decision rule and split a node. A lower value reduces the
correlation of the trees and, thus, the ensemble's variance, but may also increase the bias.
Good starting values are n_features (the number of training features) for regression
problems and sqrt(n_features) for classification problems, but will depend on the
relationships among features and should be optimized using cross-validation.

Random forests are designed to contain deep fully-grown trees, which can be created
using max_depth=None and min_samples_split=2. However, these values are not
necessarily optimal, especially for high-dimensional data with many samples and,
consequently, potentially very deep trees that can become very computationally-, and
memory-, intensive.

The RandomForest class provided by sklearn support parallel training and prediction by
setting the n_jobs parameter to the k number of jobs to run on different cores.
The -1 value uses all available cores. The overhead of interprocess communication may
limit the speedup from being linear so that k jobs may take more than 1/k the time of a
single job. Nonetheless, the speedup is often quite significant for large forests or deep
individual trees that may take a meaningful amount of time to train when the data is large,
and split evaluation becomes costly.

As always, the best parameter configuration should be identified using cross-validation.
The following steps illustrate the process:

We will use GridSearchCV to identify an optimal set of parameters for an1.
ensemble of classification trees:

rf_clf = RandomForestClassifier(n_estimators=10,
 criterion='gini',
 max_depth=None,
 min_samples_split=2,
 min_samples_leaf=1,

Decision Trees and Random Forests Chapter 10

[309]

 min_weight_fraction_leaf=0.0,
 max_features='auto',
 max_leaf_nodes=None,
 min_impurity_decrease=0.0,
 min_impurity_split=None,
 bootstrap=True, oob_score=False,
 n_jobs=-1, random_state=42)

We will use 10-fold custom cross-validation and populate the parameter grid2.
with values for the key configuration settings:

cv = OneStepTimeSeriesSplit(n_splits=10)
clf = RandomForestClassifier(random_state=42, n_jobs=-1)
param_grid = {'n_estimators': [200, 400],
 'max_depth': [10, 15, 20],
 'min_samples_leaf': [50, 100]}

Configure GridSearchCV using the preceding input:3.

gridsearch_clf = GridSearchCV(estimator=clf,
 param_grid=param_grid,
 scoring='roc_auc',
 n_jobs=-1,
 cv=cv,
 refit=True,
 return_train_score=True,
 verbose=1)

Train the multiple ensemble models defined by the parameter grid:4.

gridsearch_clf.fit(X=X, y=y_binary)

Obtain the best parameters as follows:5.

gridsearch_clf.bestparams
{'max_depth': 15,
 'min_samples_leaf': 100,
 'n_estimators': 400}

The best score is a small but significant improvement over the single-tree6.
baseline:

gridsearch_clf.bestscore_
0.6013

Decision Trees and Random Forests Chapter 10

[310]

Feature importance for random forests
A random forest ensemble may contain hundreds of individual trees, but it is still possible
to obtain an overall summary measure of feature importance from bagged models.

For a given feature, the importance score is the total reduction in the objective function's
value, which results from splits based on this feature, averaged over all trees. Since the
objective function takes into account how many features are affected by a split, this
measure is implicitly a weighted average so that features used near the top of a tree will get
higher scores due to the larger number of observations contained in the much smaller
number of available nodes. By averaging over many trees grown in a randomized fashion,
the feature importance estimate loses some variance and becomes more accurate.

The computation differs for classification and regression trees based on the different
objectives used to learn the decision rules and is measured in terms of the mean square
error for regression trees and the Gini index or entropy for classification trees.

sklearn further normalizes the feature-importance measure so that it sums up to 1.
Feature importance thus computed is also used for feature selection as an alternative to the
mutual information measures we saw in Chapter 6, The Machine Learning Process
(see SelectFromModel in the sklearn.feature_selection module).

In our example, the importance values for the top-20 features are as shown here:

Feature-importance values

Decision Trees and Random Forests Chapter 10

[311]

Out-of-bag testing
Random forests offer the benefit of built-in cross-validation because individual trees are
trained on bootstrapped versions of the training data. As a result, each tree uses on average
only two-thirds of the available observations. To see why, consider that a bootstrap sample
has the same size, n, as the original sample, and each observation has the same probability,
1/n, to be drawn. Hence, the probability of not entering a bootstrap sample at all is (1-1/n)n,
which converges (quickly) to 1/e, or roughly one-third.

This remaining one-third of the observations that are not included in the training set used
to grow a bagged tree is called out-of-bag (OOB) observations and can serve as a validation
set. Just as with cross-validation, we predict the response for an OOB sample for each tree
built without this observation, and then average the predicted responses (if regression is
the goal) or take a majority vote or predicted probability (if classification is the goal) for a
single ensemble prediction for each OOB sample. These predictions produce an
unbiased estimate of the generalization error, conveniently computed during training.

The resulting OOB error is a valid estimate of the generalization error for this observation
because the prediction is produced using decision rules learned in the absence of this
observation. Once the random forest is sufficiently large, the OOB error closely
approximates the leave-one-out cross-validation error. The OOB approach to estimate the
test error is very efficient for large datasets where cross-validation can be computationally
costly.

Pros and cons of random forests
Bagged ensemble models have both advantages and disadvantages. The advantages of
random forests include:

The predictive performance can compete with the best supervised learning
algorithms
They provide a reliable feature importance estimate
They offer efficient estimates of the test error without incurring the cost of
repeated model training associated with cross-validation

Decision Trees and Random Forests Chapter 10

[312]

On the other hand, random forests also have a few disadvantages:

An ensemble model is inherently less interpretable than an individual decision
tree
Training a large number of deep trees can have high computational costs (but can
be parallelized) and use a lot of memory
Predictions are slower, which may create challenges for applications that
require low latency

Summary
In this chapter, we learned about a new class of models capable of capturing a non-linear
relationship, in contrast to the classical linear models we had explored so far. We saw how
decision trees learn rules to partition the feature space into regions that yield predictions
and thus segment the input data into specific regions.

Decision trees are very useful because they provide unique insights into the relationships
between features and target variables, and we saw how to visualize the sequence of
decision rules encoded in the tree structure.

Unfortunately, a decision tree is prone to overfitting. We learned that ensemble models and
the bootstrap aggregation method manages to overcome some of the shortcomings of
decision trees and render them useful, as components of much more powerful composite
models.

In the next chapter, we will explore another ensemble model, which has come to be
considered one of the most important machine learning algorithms.

11
Gradient Boosting Machines

In the previous chapter, we learned about how random forests improve the predictions
made by individual decision trees by combining them into an ensemble that reduces the
high variance of individual trees. Random forests use bagging, which is short for bootstrap
aggregation, to introduce random elements into the process of growing individual trees.

More specifically, bagging draws samples from the data with replacement so that each tree
is trained on a different but equal-sized random subset of the data (with some observations
repeating). Random forests also randomly select a subset of the features so that both the
rows and the columns of the data that are used to train each tree are random versions of the
original data. The ensemble then generates predictions by averaging over the outputs of the
individual trees.

Individual trees are usually grown deep to ensure low bias while relying on the
randomized training process to produce different, uncorrelated prediction errors that have
a lower variance when aggregated than individual tree predictions. In other words, the
randomized training aims to decorrelate or diversify the errors made by the individual
trees so that the ensemble is much less susceptible to overfitting, has lower variance, and
generalizes better to new data.

In this chapter, we will explore boosting, an alternative machine learning (ML) algorithm
for ensembles of decision trees that often produces even better results. The key difference is
that boosting modifies the data that is used to train each tree based on the cumulative
errors made by the model before adding the new tree. In contrast to random forests which
train many trees independently from each other using different versions of the training set,
boosting proceeds sequentially using reweighted versions of the data. State-of-the-art
boosting implementations also adopt the randomization strategies of random forests.

Gradient Boosting Machines Chapter 11

[314]

In this chapter, we will see how boosting has evolved into one of the most successful ML
algorithms over the last three decades. At the time of writing, it has come to dominate
machine learning competitions for structured data (as opposed to high-dimensional images
or speech, for example, where the relationship between the input and output is more
complex, and deep learning excels at). More specifically, in this chapter we will cover the
following topics:

How boosting works, and how it compares to bagging
How boosting has evolved from adaptive to gradient boosting
How to use and tune AdaBoost and gradient boosting models with sklearn
How state-of-the-art GBM implementations dramatically speed up computation
How to prevent overfitting of gradient boosting models
How to build, tune, and evaluate gradient boosting models on large datasets
using xgboost, lightgbm, and catboost
How to interpret and gain insights from gradient boosting models

Adaptive boosting
Like bagging, boosting is an ensemble learning algorithm that combines base
learners (typically decision trees) into an ensemble. Boosting was initially developed
for classification problems, but can also be used for regression, and has been called one of
the most potent learning ideas introduced in the last 20 years (as described in Elements of
Statistical Learning by Trevor Hastie, et al.; see GitHub for links to references). Like bagging,
it is a general method or metamethod that can be applied to many statistical learning
models.

The motivation for the development of boosting was to find a method to combine the
outputs of many weak models (a predictor is called weak when it performs just slightly
better than random guessing) into a more powerful, that is, boosted joint prediction. In
general, boosting learns an additive hypothesis, HM, of a form similar to linear regression.
However, now each of the m= 1,..., M elements of the summation is a weak base learner,
called ht that itself requires training. The following formula summarizes the approach:

Gradient Boosting Machines Chapter 11

[315]

As discussed in the last chapter, bagging trains base learners on different random samples
of the training data. Boosting, in contrast, proceeds sequentially by training the base
learners on data that is repeatedly modified to reflect the cumulative learning results. The
goal is to ensure that the next base learner compensates for the shortcomings of the current
ensemble. We will see in this chapter that boosting algorithms differ in how they define
shortcomings. The ensemble makes predictions using a weighted average of the predictions
of the weak models.

The first boosting algorithm that came with a mathematical proof that it enhances the
performance of weak learners was developed by Robert Schapire and Yoav Freund around
1990. In 1997, a practical solution for classification problems emerged in the form
of the adaptive boosting (AdaBoost) algorithm, which won the Göedel Prize in 2003. About
another five years later, this algorithm was extended to arbitrary objective functions when
Leo Breiman (who invented random forests) connected the approach to gradient descent,
and Jerome Friedman came up with gradient boosting in 1999. Numerous optimized
implementations, such as XGBoost, LightGBM, and CatBoost, have emerged in recent years
and firmly established gradient boosting as the go-to solution for structured data.

In the following sections, we will briefly introduce AdaBoost and then focus on the
gradient boosting model, as well as several state-of-the-art implementations of this very
powerful and flexible algorithm.

The AdaBoost algorithm
AdaBoost was the first boosting algorithm to iteratively adapt to the cumulative learning
progress when fitting an additional ensemble member. In particular, AdaBoost changed the
weights on the training data to reflect the cumulative errors of the current ensemble on the
training set before fitting a new weak learner. AdaBoost was the most accurate
classification algorithm at the time, and Leo Breiman referred to it as the best off-the-shelf
classifier in the world at the 1996 NIPS conference.

The algorithm had a very significant impact on ML because it provided theoretical
performance guarantees. These guarantees only require sufficient data and a weak learner
that reliably predicts just better than a random guess. As a result of this adaptive method
that learns in stages, the development of an accurate ML model no longer required accurate
performance over the entire feature space. Instead, the design of a model could focus on
finding weak learners that just outperformed a coin flip.

Gradient Boosting Machines Chapter 11

[316]

AdaBoost is a significant departure from bagging, which builds ensembles on very deep
trees to reduce bias. AdaBoost, in contrast, grows shallow trees as weak learners, often
producing superior accuracy with stumps—that is, trees formed by a single split. The
algorithm starts with an equal-weighted training set and then successively alters the sample
distribution. After each iteration, AdaBoost increases the weights of incorrectly classified
observations and reduces the weights of correctly predicted samples so that subsequent
weak learners focus more on particularly difficult cases. Once trained, the new decision tree
is incorporated into the ensemble with a weight that reflects its contribution to reducing the
training error.

The AdaBoost algorithm for an ensemble of base learners, hm(x), m=1, ..., M, that predict
discrete classes, y ∈ [-1, 1], and N training observations can be summarized as follows:

Initialize sample weights wi=1/N for observations i=1, ..., N.1.
For each base classifier hm, m=1, ..., M, do the following:2.

Fit hm(x) to the training data, weighted by wi.1.
Compute the base learner's weighted error rate εm on the training set.2.
Compute the base learner's ensemble weight αm as a function of its3.
error rate, as shown in the following formula:

Update the weights for misclassified samples according to wi * exp(αm).4.

Predict the positive class when the weighted sum of the ensemble members is3.
positive, and negative otherwise, as shown in the following formula:

AdaBoost has many practical advantages, including ease of implementation and fast
computation, and it can be combined with any method for identifying weak learners. Apart
from the size of the ensemble, there are no hyperparameters that require tuning. AdaBoost
is also useful for identifying outliers because the samples that receive the highest weights
are those that are consistently misclassified and inherently ambiguous, which is also typical
for outliers.

Gradient Boosting Machines Chapter 11

[317]

On the other hand, the performance of AdaBoost on a given dataset depends on the ability
of the weak learner to adequately capture the relationship between features and outcome.
As the theory suggests, boosting will not perform well when there is insufficient data, or
when the complexity of the ensemble members is not a good match for the complexity of
the data. It can also be susceptible to noise in the data.

AdaBoost with sklearn
As part of its ensemble module, sklearn provides an AdaBoostClassifier
implementation that supports two or more classes. The code examples for this section are in
the notebook gbm_baseline that compares the performance of various algorithms with a
dummy classifier that always predicts the most frequent class.

We need to first define a base_estimator as a template for all ensemble members and
then configure the ensemble itself. We'll use the default DecisionTreeClassifier with
max_depth=1—that is, a stump with a single split. The complexity of the base_estimator
is a key tuning parameter because it depends on the nature of the data. As demonstrated in
the previous chapter, changes to max_depth should be combined with appropriate
regularization constraints using adjustments to, for example, min_samples_split, as
shown in the following code:

base_estimator = DecisionTreeClassifier(criterion='gini',
 splitter='best',
 max_depth=1,
 min_samples_split=2,
 min_samples_leaf=20,
 min_weight_fraction_leaf=0.0,
 max_features=None,
 random_state=None,
 max_leaf_nodes=None,
 min_impurity_decrease=0.0,
 min_impurity_split=None)

In the second step, we'll design the ensemble. The n_estimators parameter controls the
number of weak learners and the learning_rate determines the contribution of each
weak learner, as shown in the following code. By default, weak learners are decision tree
stumps:

ada_clf = AdaBoostClassifier(base_estimator=base_estimator,
 n_estimators=200,
 learning_rate=1.0,
 algorithm='SAMME.R',
 random_state=42)

Gradient Boosting Machines Chapter 11

[318]

The main tuning parameters that are responsible for good results are n_estimators and
the base estimator complexity because the depth of the tree controls the extent of the
interaction among the features.

We will cross-validate the AdaBoost ensemble using a custom 12-fold rolling time-series
split to predict 1 month ahead for the last 12 months in the sample, using all available prior
data for training, as shown in the following code:

cv = OneStepTimeSeriesSplit(n_splits=12, test_period_length=1,
shuffle=True)
def run_cv(clf, X=X_dummies, y=y, metrics=metrics, cv=cv, fit_params=None):
 return cross_validate(estimator=clf,
 X=X,
 y=y,
 scoring=list(metrics.keys()),
 cv=cv,
 return_train_score=True,
 n_jobs=-1, # use all cores
 verbose=1,
 fit_params=fit_params)

The result shows a weighted test accuracy of 0.62, a test AUC of 0.6665, and a negative log
loss of -0.6923, as well as a test F1 score of 0.5876, as shown in the following screenshot:

Gradient Boosting Machines Chapter 11

[319]

See the companion notebook for additional details on the code to cross-validate and process
the results.

Gradient boosting machines
AdaBoost can also be interpreted as a stagewise forward approach to minimizing an
exponential loss function for a binary y ∈ [-1, 1] at each iteration m to identify a new base
learner hm with the corresponding weight αm to be added to the ensemble, as shown in the
following formula:

This interpretation of the AdaBoost algorithm was only discovered several years after its
publication. It views AdaBoost as a coordinate-based gradient descent algorithm that
minimizes a particular loss function, namely exponential loss.

Gradient boosting leverages this insight and applies the boosting method to a much wider
range of loss functions. The method enables the design of machine learning algorithms to
solve any regression, classification, or ranking problem as long as it can be formulated
using a loss function that is differentiable and thus has a gradient. The flexibility to
customize this general method to many specific prediction tasks is essential to boosting's
popularity.

The main idea behind the resulting Gradient Boosting Machines (GBM) algorithm is the
training of the base learners to learn the negative gradient of the current loss function of the
ensemble. As a result, each addition to the ensemble directly contributes to reducing the
overall training error given the errors made by prior ensemble members. Since each new
member represents a new function of the data, gradient boosting is also said to optimize
over the functions hm in an additive fashion.

In short, the algorithm successively fits weak learners hm, such as decision trees, to the
negative gradient of the loss function that is evaluated for the current ensemble, as shown
in the following formula:

Gradient Boosting Machines Chapter 11

[320]

In other words, at a given iteration m, the algorithm computes the gradient of the current
loss for each observation and then fits a regression tree to these pseudo-residuals. In a
second step, it identifies an optimal constant prediction for each terminal node that
minimizes the incremental loss that results from adding this new learner to the ensemble.

This differs from standalone decision trees and random forests, where the prediction
depends on the outcome values of the training samples present in the relevant terminal or
leaf node: their average, in the case of regression, or the frequency of the positive class for
binary classification. The focus on the gradient of the loss function also implies that
gradient boosting uses regression trees to learn both regression and classification rules
since the gradient is always a continuous function.

The final ensemble model makes predictions based on the weighted sum of the predictions
of the individual decision trees, each of which has been trained to minimize the ensemble
loss given the prior prediction for a given set of feature values, as shown in the following
diagram:

Gradient boosting trees have demonstrated state-of-the-art performance on many
classification, regression, and ranking benchmarks. They are probably the most popular
ensemble learning algorithm both as a standalone predictor in a diverse set of machine
learning competitions, as well as in real-world production pipelines, for example, to predict
click-through rates for online ads.

The success of gradient boosting is based on its ability to learn complex functional
relationships in an incremental fashion. The flexibility of this algorithm requires the careful
management of the risk of overfitting by tuning hyperparameters that constrain the model's
inherent tendency to learn noise as opposed to the signal in the training data.

Gradient Boosting Machines Chapter 11

[321]

We will introduce the key mechanisms to control the complexity of a gradient boosting tree
model, and then illustrate model tuning using the sklearn implementation.

How to train and tune GBM models
The two key drivers of gradient boosting performance are the size of the ensemble and the
complexity of its constituent decision trees.

The control of complexity for decision trees aims to avoid learning highly specific rules that
typically imply a very small number of samples in leaf nodes. We covered the most
effective constraints used to limit the ability of a decision tree to overfit to the training data
in the previous chapter. They include requiring:

A minimum number of samples to either split a node or accept it as a terminal
node, or
A minimum improvement in node quality as measured by the purity or entropy
or mean square error, in the case of regression.

In addition to directly controlling the size of the ensemble, there are various regularization
techniques, such as shrinkage, that we encountered in the context of the Ridge
and Lasso linear regression models in Chapter 7, Linear Models. Furthermore, the
randomization techniques used in the context of random forests are also commonly applied
to gradient boosting machines.

Ensemble size and early stopping
Each boosting iteration aims to reduce the training loss so that for a large ensemble, the
training error can potentially become very small, increasing the risk of overfitting and poor
performance on unseen data. Cross-validation is the best approach to find the optimal
ensemble size that minimizes the generalization error because it depends on the application
and the available data.

Since the ensemble size needs to be specified before training, it is useful to monitor the
performance on the validation set and abort the training process when, for a given number
of iterations, the validation error no longer decreases. This technique is called early
stopping and frequently used for models that require a large number of iterations and are
prone to overfitting, including deep neural networks.

Gradient Boosting Machines Chapter 11

[322]

Keep in mind that using early stopping with the same validation set for a large number of
trials will also lead to overfitting, just to the particular validation set rather than the
training set. It is best to avoid running a large number of experiments when developing a
trading strategy as the risk of false discoveries increases significantly. In any case, keep a
hold-out set to obtain an unbiased estimate of the generalization error.

Shrinkage and learning rate
Shrinkage techniques apply a penalty for increased model complexity to the model's loss
function. For boosting ensembles, shrinkage can be applied by scaling the contribution of
each new ensemble member down by a factor between 0 and 1. This factor is called the
learning rate of the boosting ensemble. Reducing the learning rate increases shrinkage
because it lowers the contribution of each new decision tree to the ensemble.

The learning rate has the opposite effect of the ensemble size, which tends to increase for
lower learning rates. Lower learning rates coupled with larger ensembles have been found
to reduce the test error, in particular for regression and probability estimation. Large
numbers of iterations are computationally more expensive but often feasible with fast state-
of-the-art implementations as long as the individual trees remain shallow. Depending on
the implementation, you can also use adaptive learning rates that adjust to the number of
iterations, typically lowering the impact of trees added later in the process. We will see
some examples later in this chapter.

Subsampling and stochastic gradient boosting
As discussed in detail in the previous chapter, bootstrap averaging (bagging) improves the
performance of an otherwise noisy classifier.

Stochastic gradient boosting uses sampling without replacement at each iteration to grow
the next tree on a subset of the training samples. The benefit is both lower computational
effort and often better accuracy, but subsampling should be combined with shrinkage.

As you can see, the number of hyperparameters keeps increasing, driving up the number of
potential combinations, which in turn increases the risk of false positives when choosing
the best model from a large number of parameter trials on a limited amount of training
data. The best approach is to proceed sequentially and select parameter values individually
or using combinations of subsets of low cardinality.

Gradient Boosting Machines Chapter 11

[323]

How to use gradient boosting with sklearn
The ensemble module of sklearn contains an implementation of gradient boosting trees for
regression and classification, both binary and multiclass. The
following GradientBoostingClassifier initialization code illustrates the key tuning
parameters that we previously introduced, in addition to those that we are familiar with
from looking at standalone decision tree models. The notebook
gbm_tuning_with_sklearn contains the code examples for this section.

The available loss functions include the exponential loss that leads to the AdaBoost
algorithm and the deviance that corresponds to the logistic regression for probabilistic
outputs. The friedman_mse node quality measure is a variation on the mean squared error
that includes an improvement score (see GitHub references for links to original papers), as
shown in the following code:

gb_clf = GradientBoostingClassifier(loss='deviance', #
deviance = logistic reg; exponential: AdaBoost
 learning_rate=0.1, #
shrinks the contribution of each tree
 n_estimators=100, #
number of boosting stages
 subsample=1.0, #
fraction of samples used t fit base learners
 criterion='friedman_mse', #
measures the quality of a split
 min_samples_split=2,
 min_samples_leaf=1,
 min_weight_fraction_leaf=0.0, # min.
fraction of sum of weights
 max_depth=3, # opt
value depends on interaction
 min_impurity_decrease=0.0,
 min_impurity_split=None,
 max_features=None,
 max_leaf_nodes=None,
 warm_start=False,
 presort='auto',
 validation_fraction=0.1,
 tol=0.0001)

Gradient Boosting Machines Chapter 11

[324]

Similar to AdaBoostClassifier, this model cannot handle missing values. We'll again use
12-fold cross-validation to obtain errors for classifying the directional return for rolling 1
month holding periods, as shown in the following code:

gb_cv_result = run_cv(gb_clf, y=y_clean, X=X_dummies_clean)
gb_result = stack_results(gb_cv_result)

We will parse and plot the result to find a slight improvement—using default parameter
values—over the AdaBoostClassifier, as shown in the following screenshot:

How to tune parameters with GridSearchCV
The GridSearchCV class in the model_selection module facilitates the systematic
evaluation of all combinations of the hyperparameter values that we would like to test. In
the following code, we will illustrate this functionality for seven tuning parameters that
when defined will result in a total of 24 x 32 x 4 = 576 different model configurations:

cv = OneStepTimeSeriesSplit(n_splits=12)

param_grid = dict(
 n_estimators=[100, 300],
 learning_rate=[.01, .1, .2],

Gradient Boosting Machines Chapter 11

[325]

 max_depth=list(range(3, 13, 3)),
 subsample=[.8, 1],
 min_samples_split=[10, 50],
 min_impurity_decrease=[0, .01],
 max_features=['sqrt', .8, 1]
)

The .fit() method executes the cross-validation using the custom
OneStepTimeSeriesSplit and the roc_auc score to evaluate the 12-folds. Sklearn lets us
persist the result as it would for any other model using the joblib pickle implementation,
as shown in the following code:

gs = GridSearchCV(gb_clf,
 param_grid,
 cv=cv,
 scoring='roc_auc',
 verbose=3,
 n_jobs=-1,
 return_train_score=True)
gs.fit(X=X, y=y)

persist result using joblib for more efficient storage of large numpy
arrays
joblib.dump(gs, 'gbm_gridsearch.joblib')

The GridSearchCV object has several additional attributes after completion that we can
access after loading the pickled result to learn which hyperparameter combination
performed best and its average cross-validation AUC score, which results in a modest
improvement over the default values. This is shown in the following code:

pd.Series(gridsearch_result.best_params_)
learning_rate 0.01
max_depth 9.00
max_features 1.00
min_impurity_decrease 0.01
min_samples_split 10.00
n_estimators 300.00
subsample 0.80

gridsearch_result.best_score_
0.6853

Parameter impact on test scores
The GridSearchCV result stores the average cross-validation scores so that we can analyze
how different hyperparameter settings affect the outcome.

Gradient Boosting Machines Chapter 11

[326]

The six seaborn swarm plots in the left-hand panel of the below chart show the
distribution of AUC test scores for all parameter values. In this case, the highest AUC test
scores required a low learning_rate and a large value for max_features. Some
parameter settings, such as a low learning_rate, produce a wide range of outcomes that
depend on the complementary settings of other parameters. Other parameters are
compatible with high scores for all settings use in the experiment:

We will now explore how hyperparameter settings jointly affect the mean cross-validation
score. To gain insight into how parameter settings interact, we can train a
DecisionTreeRegressor with the mean test score as the outcome and the parameter
settings, encoded as categorical variables in one-hot or dummy format (see the notebook for
details). The tree structure highlights that using all features (max_features_1), a low
learning_rate, and a max_depth over three led to the best results, as shown in the
following diagram:

Gradient Boosting Machines Chapter 11

[327]

The bar chart in the right-hand panel of the first chart in this section displays the influence
of the hyperparameter settings in producing different outcomes, measured by their feature
importance for a decision tree that is grown to its maximum depth. Naturally, the features
that appear near the top of the tree also accumulate the highest importance scores.

How to test on the holdout set
Finally, we would like to evaluate the best model's performance on the holdout set that we
excluded from the GridSearchCV exercise. It contains the last six months of the sample
period (through February 2018; see the notebook for details). We obtain a generalization
performance estimate based on the AUC score of 0.6622 using the following code:

best_model = gridsearch_result.best_estimator_
preds= best_model.predict(test_feature_data)
roc_auc_score(y_true=test_target, y_score=preds)
0.6622

The downside of the sklearn gradient boosting implementation is the limited speed of
computation which makes it difficult to try out different hyperparameter settings quickly.
In the next section, we will see that several optimized implementations have emerged over
the last few years that significantly reduce the time required to train even large-scale
models, and have greatly contributed to a broader scope for applications of this
highly effective algorithm.

Fast scalable GBM implementations
Over the last few years, several new gradient boosting implementations have used various
innovations that accelerate training, improve resource efficiency, and allow the algorithm to
scale to very large datasets. The new implementations and their sources are as follows:

XGBoost (extreme gradient boosting), started in 2014 by Tianqi Chen at the
University of Washington
LightGBM, first released in January 2017, by Microsoft
CatBoost, first released in April 2017 by Yandex

These innovations address specific challenges of training a gradient boosting model (see
this chapter's README on GitHub for detailed references). The XGBoost implementation was
the first new implementation to gain popularity: among the 29 winning solutions published
by Kaggle in 2015, 17 solutions used XGBoost. Eight of these solely relied on XGBoost,
while the others combined XGBoost with neural networks.

Gradient Boosting Machines Chapter 11

[328]

We will first introduce the key innovations that have emerged over time and subsequently
converged (so that most features are available for all implementations) before illustrating
their implementation.

How algorithmic innovations drive performance
Random forests can be trained in parallel by growing individual trees on independent
bootstrap samples. In contrast, the sequential approach of gradient boosting slows down
training, which in turn complicates experimentation with a large number of
hyperparameters that need to be adapted to the nature of the task and the dataset.

To expand the ensemble by a tree, the training algorithm incrementally minimizes the
prediction error with respect to the negative gradient of the ensemble's loss function,
similar to a conventional gradient descent optimizer. Hence, the computational cost during
training is proportional to the time it takes to evaluate the impact of potential split points
for each feature on the decision tree's fit to the current gradient.

Second-order loss function approximation
The most important algorithmic innovations lower the cost of evaluating the loss function
by using approximations that rely on second-order derivatives, resembling Newton's
method to find stationary points. As a result, scoring potential splits during greedy tree
expansion is faster relative to using the full loss function.

As mentioned previously, a gradient boosting model is trained in an incremental manner
with the goal of minimizing the combination of the prediction error and the regularization
penalty for the ensemble HM. Denoting the prediction of the outcome yi by the ensemble
after step m as ŷi

(m), l as a differentiable convex loss function that measures the difference
between the outcome and the prediction, and Ω as a penalty that increases with the
complexity of the ensemble HM, the incremental hypothesis hm aims to minimize the
following objective:

Gradient Boosting Machines Chapter 11

[329]

The regularization penalty helps to avoid overfitting by favoring the selection of a model
that uses simple and predictive regression trees. In the case of XGBoost, for example, the
penalty for a regression tree h depends on the number of leaves per tree T, the regression
tree scores for each terminal node w, and the hyperparameters γ and λ. This is summarized
in the following formula:

Therefore, at each step, the algorithm greedily adds the hypothesis hm that most improves
the regularized objective. The second-order approximation of a loss function, based on a
Taylor expansion, speeds up the evaluation of the objective, as summarized in the
following formula:

Here, gi is the first-order gradient of the loss function before adding the new learner for a
given feature value, and hi is the corresponding second-order gradient (or Hessian) value,
as shown in the following formulas:

The XGBoost algorithm was the first open-source algorithm to leverage this approximation
of the loss function to compute the optimal leave scores for a given tree structure and the
corresponding value of the loss function. The score consists of the ratio of the sums of the
gradient and Hessian for the samples in a terminal node. It uses this value to score the
information gain that would result from a split, similar to the node impurity measures we
saw in the previous chapter, but applicable to arbitrary loss functions (see the references on
GitHub for the detailed derivation).

Gradient Boosting Machines Chapter 11

[330]

Simplified split-finding algorithms
The gradient boosting implementation by sklearn finds the optimal split that enumerates all
options for continuous features. This precise greedy algorithm is computationally very
demanding because it must first sort the data by feature values before scoring the
potentially very large number of split options and making a decision. This approach faces
challenges when the data does not fit in memory or when training in a distributed setting
on multiple machines.

An approximate split-finding algorithm reduces the number of split points by assigning
feature values to a user-determined set of bins, which can also greatly reduce the memory
requirements during training because only a single split needs to be stored for each bin.
XGBoost introduced a quantile sketch algorithm that was also able to divide weighted
training samples into percentile bins to achieve a uniform distribution. XGBoost also
introduced the ability to handle sparse data caused by missing values, frequent zero-
gradient statistics, and one-hot encoding, and can also learn an optimal default direction for
a given split. As a result, the algorithm only needs to evaluate non-missing values.

In contrast, LightGBM uses gradient-based one-side sampling (GOSS) to exclude a
significant proportion of samples with small gradients, and only uses the remainder to
estimate the information gain and select a split value accordingly. Samples with larger
gradients require more training and tend to contribute more to the information
gain. LightGBM also uses exclusive feature bundling to combine features that are mutually
exclusive, in that they rarely take nonzero values simultaneously, to reduce the number of
features. As a result, LightGBM was the fastest implementation when released.

Depth-wise versus leaf-wise growth
LightGBM differs from XGBoost and CatBoost in how it prioritizes which nodes to split.
LightGBM decides on splits leaf-wise, i.e., it splits the leaf node that maximizes the
information gain, even when this leads to unbalanced trees. In contrast, XGBoost and
CatBoost expand all nodes depth-wise and first split all nodes at a given depth before
adding more levels. The two approaches expand nodes in a different order and will
produce different results except for complete trees. The following diagram illustrates the
two approaches:

Gradient Boosting Machines Chapter 11

[331]

LightGBM's leaf-wise splits tend to increase model complexity and may speed up
convergence, but also increase the risk of overfitting. A tree grown depth-wise with n levels
has up to 2n terminal nodes, whereas a leaf-wise tree with 2n leaves can have significantly
more levels and contain correspondingly fewer samples in some leaves. Hence, tuning
LightGBM's num_leaves setting requires extra caution, and the library allows us to
control max_depth at the same time to avoid undue node imbalance. More recent versions
of LightGBM also offer depth-wise tree growth.

GPU-based training
All new implementations support training and prediction on one or more GPUs to achieve
significant speedups. They are compatible with current CUDA-enabled GPUs. Installation
requirements vary and are evolving quickly. The XGBoost and CatBoost implementations
work for several current versions, but LightGBM may require local compilation (see
GitHub for links to the relevant documentation).

The speedups depend on the library and the type of the data, and range from low, single-
digit multiples to factors of several dozen. Activation of the GPU only requires the change
of a task parameter and no other hyperparameter modifications.

DART – dropout for trees
In 2015, Rashmi and Gilad-Bachrach proposed a new model to train gradient boosting trees
that aimed to address a problem they labeled over-specialization: trees added during later
iterations tend only to affect the prediction of a few instances while making a minor
contribution regarding the remaining instances. However, the model's out-of-sample
performance can suffer, and it may become over-sensitive to the contributions of a small
number of trees added earlier in the process.

Gradient Boosting Machines Chapter 11

[332]

The new algorithms employ dropouts which have been successfully used for learning more
accurate deep neural networks where dropouts mute a random fraction of the neural
connections during the learning process. As a result, nodes in higher layers cannot rely on a
few connections to pass the information needed for the prediction. This method has made a
significant contribution to the success of deep neural networks for many tasks and has also
been used with other learning techniques, such as logistic regression, to mute a random
share of the features. Random forests and stochastic gradient boosting also drop out a
random subset of features.

DART operates at the level of trees and mutes complete trees as opposed to individual
features. The goal is for trees in the ensemble generated using DART to contribute more
evenly towards the final prediction. In some cases, this has been shown to produce more
accurate predictions for ranking, regression, and classification tasks. The approach was first
implemented in LightGBM and is also available for XGBoost.

Treatment of categorical features
The CatBoost and LightGBM implementations handle categorical variables directly without
the need for dummy encoding.

The CatBoost implementation (which is named for its treatment of categorical features)
includes several options to handle such features, in addition to automatic one-hot encoding,
and assigns either the categories of individual features or combinations of categories for
several features to numerical values. In other words, CatBoost can create new categorical
features from combinations of existing features. The numerical values associated with the
category levels of individual features or combinations of features depend on their
relationship with the outcome value. In the classification case, this is related to the
probability of observing the positive class, computed cumulatively over the sample, based
on a prior, and with a smoothing factor. See the documentation for more detailed numerical
examples.

The LightGBM implementation groups the levels of the categorical features to maximize
homogeneity (or minimize variance) within groups with respect to the outcome values.

The XGBoost implementation does not handle categorical features directly and requires
one-hot (or dummy) encoding.

Gradient Boosting Machines Chapter 11

[333]

Additional features and optimizations
XGBoost optimized computation in several respects to enable multithreading by keeping
data in memory in compressed column blocks, where each column is sorted by the
corresponding feature value. XGBoost computes this input data layout once before training
and reuses it throughout to amortize the additional up-front cost. The search for split
statistics over columns becomes a linear scan when using quantiles that can be done in
parallel with easy support for column subsampling.

The subsequently released LightGBM and CatBoost libraries built on these innovations, and
LightGBM further accelerated training through optimized threading and reduced memory
usage. Because of their open source nature, libraries have tended to converge over time.

XGBoost also supports monotonicity constraints. These constraints ensure that the values
for a given feature are only positively or negatively related to the outcome over its entire
range. They are useful to incorporate external assumptions about the model that are known
to be true.

How to use XGBoost, LightGBM, and CatBoost
XGBoost, LightGBM, and CatBoost offer interfaces for multiple languages, including
Python, and have both a sklearn interface that is compatible with other sklearn features,
such as GridSearchCV and their own methods to train and predict gradient boosting
models. The gbm_baseline.ipynb notebook illustrates the use of the sklearn interface for
each implementation. The library methods are often better documented and are also easy to
use, so we'll use them to illustrate the use of these models.

The process entails the creation of library-specific data formats, the tuning of various
hyperparameters, and the evaluation of results that we will describe in the following
sections. The accompanying notebook contains the gbm_tuning.py, gbm_utils.py
and, gbm_params.py files that jointly provide the following functionalities and have
produced the corresponding results.

How to create binary data formats
All libraries have their own data format to precompute feature statistics to accelerate the
search for split points, as described previously. These can also be persisted to accelerate the
start of subsequent training.

Gradient Boosting Machines Chapter 11

[334]

The following code constructs binary train and validation datasets for each model to be
used with the OneStepTimeSeriesSplit:

cat_cols = ['year', 'month', 'age', 'msize', 'sector']
data = {}
for fold, (train_idx, test_idx) in enumerate(kfold.split(features)):
 print(fold, end=' ', flush=True)
 if model == 'xgboost':
 data[fold] = {'train': xgb.DMatrix(label=target.iloc[train_idx],
 data=features.iloc[train_idx],
 nthread=-1), #
use avail. threads
 'valid': xgb.DMatrix(label=target.iloc[test_idx],
 data=features.iloc[test_idx],
 nthread=-1)}
 elif model == 'lightgbm':
 train = lgb.Dataset(label=target.iloc[train_idx],
 data=features.iloc[train_idx],
 categorical_feature=cat_cols,
 free_raw_data=False)

 # align validation set histograms with training set
 valid = train.create_valid(label=target.iloc[test_idx],
 data=features.iloc[test_idx])

 data[fold] = {'train': train.construct(),
 'valid': valid.construct()}

 elif model == 'catboost':
 # get categorical feature indices
 cat_cols_idx = [features.columns.get_loc(c) for c in cat_cols]
 data[fold] = {'train': Pool(label=target.iloc[train_idx],
 data=features.iloc[train_idx],
 cat_features=cat_cols_idx),

 'valid': Pool(label=target.iloc[test_idx],
 data=features.iloc[test_idx],
 cat_features=cat_cols_idx)}

The available options vary slightly:

xgboost allows the use of all available threads
lightgbm explicitly aligns the quantiles that are created for the validation set
with the training set
The catboost implementation needs feature columns identified using indices
rather than labels

Gradient Boosting Machines Chapter 11

[335]

How to tune hyperparameters
The numerous hyperparameters are listed in gbm_params.py. Each library has parameter
settings to:

Specify the overall objectives and learning algorithm
Design the base learners
Apply various regularization techniques
Handle early stopping during training
Enabling the use of GPU or parallelization on CPU

The documentation for each library details the various parameters that may refer to the
same concept, but which have different names across libraries. The GitHub repository
contains links to a site that highlights the corresponding parameters for xgboost and
lightgbm.

Objectives and loss functions
The libraries support several boosting algorithms, including gradient boosting for trees and
linear base learners, as well as DART for LightGBM and XGBoost. LightGBM also supports
the GOSS algorithm which we described previously, as well as random forests.

The appeal of gradient boosting consists of the efficient support of arbitrary differentiable
loss functions and each library offers various options for regression, classification, and
ranking tasks. In addition to the chosen loss function, additional evaluation metrics can be
used to monitor performance during training and cross-validation.

Learning parameters
Gradient boosting models typically use decision trees to capture feature interaction, and the
size of individual trees is the most important tuning parameter. XGBoost and CatBoost set
the max_depth default to 6. In contrast, LightGBM uses a default num_leaves value of 31,
which corresponds to five levels for a balanced tree, but imposes no constraints on the
number of levels. To avoid overfitting, num_leaves should be lower than 2max_depth. For
example, for a well-performing max_depth value of 7, you would set num_leaves to 70–80
rather than 27=128, or directly constrain max_depth.

Gradient Boosting Machines Chapter 11

[336]

The number of trees or boosting iterations defines the overall size of the ensemble. All
libraries support early_stopping to abort training once the loss functions register no
further improvements during a given number of iterations. As a result, it is usually best to
set a large number of iterations and stop training based on the predictive performance on a
validation set.

Regularization
All libraries implement the regularization strategies for base learners, such as minimum
values for the number of samples or the minimum information gain required for splits and
leaf nodes.

They also support regularization at the ensemble level using shrinkage via a learning rate
that constrains the contribution of new trees. It is also possible to implement an adaptive
learning rate via callback functions that lower the learning rate as the training progresses,
as has been successfully used in the context of neural networks. Furthermore, the gradient
boosting loss function can be regularized using L1 or L2, regularization similar to the Ridge
and Lasso linear regression models by modifying Ω(hm) or by increasing the penalty γ for
adding more trees, as described previously.

The libraries also allow for the use of bagging or column subsampling to randomize tree
growth for random forests and decorrelate prediction errors to reduce overall variance. The
quantization of features for approximate split finding adds larger bins as an additional
option to protect against overfitting.

Randomized grid search
To explore the hyperparameter space, we specify values for key parameters that we would
like to test in combination. The sklearn library supports RandomizedSearchCV to cross-
validate a subset of parameter combinations that are sampled randomly from specified
distributions. We will implement a custom version that allows us to leverage early stopping
while monitoring the current best-performing combinations so we can abort the search
process once satisfied with the result rather than specifying a set number of iterations
beforehand.

Gradient Boosting Machines Chapter 11

[337]

To this end, we specify a parameter grid according to each library's parameters as before,
generate all combinations using the built-in Cartesian product generator provided by
the itertools library, and randomly shuffle the result. In the case of LightGBM, we
automatically set max_depth as a function of the current num_leaves value, as shown in
the following code:

param_grid = dict(
 # common options
 learning_rate=[.01, .1, .3],
 colsample_bytree=[.8, 1], # except catboost

 # lightgbm
 num_leaves=[2 ** i for i in range(9, 14)],
 boosting=['gbdt', 'dart'],
 min_gain_to_split=[0, 1, 5], # not supported on GPU

all_params = list(product(*param_grid.values()))
n_models = len(all_params) # max number of models to cross-validate
shuffle(all_params)

We then execute cross-validation as follows:

GBM = 'lightgbm'
for test_param in all_params:
 cv_params = get_params(GBM)
 cv_params.update(dict(zip(param_grid.keys(), test_param)))
 if GBM == 'lightgbm':
 cv_params['max_depth'] =
int(ceil(np.log2(cv_params['num_leaves'])))
 results[n] = run_cv(test_params=cv_params,
 data=datasets,
 n_splits=n_splits,
 gb_machine=GBM)

The run_cv function implements cross-validation for all three libraries. For the light_gbm
example, the process looks as follows:

def run_cv(test_params, data, n_splits=10):
 """Train-Validate with early stopping"""
 result = []
 cols = ['rounds', 'train', 'valid']
 for fold in range(n_splits):
 train = data[fold]['train']
 valid = data[fold]['valid']

 scores = {}
 model = lgb.train(params=test_params,

Gradient Boosting Machines Chapter 11

[338]

 train_set=train,
 valid_sets=[train, valid],
 valid_names=['train', 'valid'],
 num_boost_round=250,
 early_stopping_rounds=25,
 verbose_eval=50,
 evals_result=scores)

 result.append([model.current_iteration(),
 scores['train']['auc'][-1],
 scores['valid']['auc'][-1]])

 return pd.DataFrame(result, columns=cols)

The train() method also produces validation scores that are stored in the scores
dictionary. When early stopping takes effect, the last iteration is also the best score. See the
full implementation on GitHub for additional details.

How to evaluate the results
Using a GPU, we can train a model in a few minutes and evaluate several hundred
parameter combinations in a matter of hours, which would take many days using the
sklearn implementation. For the LightGBM model, we explore both a factor version that
uses the libraries' ability to handle categorical variables and a dummy version that uses
one-hot encoding.

The results are available in the model_tuning.h5 HDF5 store. The model evaluation code
samples are in the eval_results.ipynb notebook.

Cross-validation results across models
When comparing average cross-validation AUC across the four test runs with the three
libraries, we find that CatBoost produces a slightly higher AUC score for the top-
performing model, while also producing the widest dispersion of outcomes, as shown in
the following graph:

Gradient Boosting Machines Chapter 11

[339]

The top-performing CatBoost model uses the following parameters (see notebook for
detail):

max_depth of 12 and max_bin of 128
max_ctr_complexity of 2, which limits the number of combinations of
categorical features
one_hot_max_size of 2, which excludes binary features from the assignment of
numerical variables
random_strength different from 0 to randomize the evaluation of splits

Training is a bit slower compared to LightGBM and XGBoost (all use the GPU) at an
average of 230 seconds per model.

Gradient Boosting Machines Chapter 11

[340]

A more detailed look at the top-performing models for the LightGBM and XGBoost models
shows that the LightGBM Factors model achieves nearly as good a performance as the
other two models with much lower model complexity. It only consists on average of 41
trees up to three levels deep with no more than eight leaves each, while also using
regularization in the form of min_gain_to_split. It overfits significantly less on the
training set, with a train AUC only slightly above the validation AUC. It also trains much
faster, taking only 18 seconds per model because of its lower complexity. In practice, this
model would be preferable since it is more likely to produce good out-of-sample
performance. The details are shown in the following table:

 LightGBM dummies XGBoost dummies LightGBM factors
Validation AUC 68.57% 68.36% 68.32%
Train AUC 82.35% 79.81% 72.12%
learning_rate 0.1 0.1 0.3
max_depth 13 9 3
num_leaves 8192 8
colsample_bytree 0.8 1 1
min_gain_to_split 0 1 0
Rounds 44.42 59.17 41.00
Time 86.55 85.37 18.78

The following plot shows the effect of different max_depth settings on the validation score
for the LightGBM and XGBoost models: shallower trees produce a wider range of outcomes
and need to be combined with appropriate learning rates and regularization settings to
produce the strong result shown in the preceding table:

Gradient Boosting Machines Chapter 11

[341]

Instead of a DecisionTreeRegressor as shown previously, we can also use linear
regression to evaluate the statistical significance of different features concerning the
validation AUC score. For the LightGBM Dummy model, where the regression explains
68% of the variation in outcomes, we find that only the min_gain_to_split
regularization parameter was not significant, as shown in the following screenshot:

In practice, gaining deeper insights into how the models arrive at predictions is extremely
important, in particular for investment strategies where decision makers often require
plausible explanations.

Gradient Boosting Machines Chapter 11

[342]

How to interpret GBM results
Understanding why a model predicts a certain outcome is very important for several
reasons, including trust, actionability, accountability, and debugging. Insights into the
nonlinear relationship between features and the outcome uncovered by the model, as well
as interactions among features, are also of value when the goal is to learn more about the
underlying drivers of the phenomenon under study.

A common approach to gaining insights into the predictions made by tree ensemble
methods, such as gradient boosting or random forest models, is to attribute feature
importance values to each input variable. These feature importance values can be
computed on an individual basis for a single prediction or globally for an entire dataset
(that is, for all samples) to gain a higher-level perspective on how the model makes
predictions.

Feature importance
There are three primary ways to compute global feature importance values:

Gain: This classic approach introduced by Leo Breiman in 1984 uses the total
reduction of loss or impurity contributed by all splits for a given feature. The
motivation is largely heuristic, but it is a commonly used method to select
features.
Split count: This is an alternative approach that counts how often a feature is
used to make a split decision, based on the selection of features for this purpose
based on the resultant information gain.
Permutation: This approach randomly permutes the feature values in a test set
and measures how much the model's error changes, assuming that an important
feature should create a large increase in the prediction error. Different
permutation choices lead to alternative implementations of this basic approach.

Individualized feature importance values that compute the relevance of features for a single
prediction are less common because available model-agnostic explanation methods are
much slower than tree-specific methods.

All gradient boosting implementations provide feature-importance scores after training as a
model attribute. The XGBoost library provides five versions, as shown in the following list:

total_gain and gain as its average per split
total_cover as the number of samples per split when a feature was used
weight as the split count from preceding values

Gradient Boosting Machines Chapter 11

[343]

These values are available using the trained model's .get_score() method with the
corresponding importance_type parameter. For the best performing XGBoost model, the
results are as follows (the total measures have a correlation of 0.8, as do cover and
total_cover):

While the indicators for different months and years dominate, the most recent 1 month
return is the second-most important feature from a total_gain perspective, and is used
frequently according to the weight measure, but produces low average gains as it is
applied to relatively few instances on average (see the notebook for implementation
details).

Partial dependence plots
In addition to the summary contribution of individual features to the model's prediction,
partial dependence plots visualize the relationship between the target variable and a set of
features. The nonlinear nature of gradient boosting trees causes this relationship to depends
on the values of all other features. Hence, we will marginalize these features out. By doing
so, we can interpret the partial dependence as the expected target response.

We can visualize partial dependence only for individual features or feature pairs. The latter
results in contour plots that show how combinations of feature values produce different
predicted probabilities, as shown in the following code:

fig, axes = plot_partial_dependence(gbrt=gb_clf,
 X=X_dummies_clean,
 features=['month_9', 'return_1m',
'return_3m', ('return_1m', 'return_3m')],
 feature_names=['month_9','return_1m',

Gradient Boosting Machines Chapter 11

[344]

'return_3m'],
 percentiles=(0.01, 0.99),
 n_jobs=-1,
 n_cols=2,
 grid_resolution=250)

After some additional formatting (see the companion notebook), we obtain the following
plot:

The lower-right plot shows the dependence of the probability of a positive return over the
next month given the range of values for lagged 1-month and 3-month returns after
eliminating outliers at the [1%, 99%] percentiles. The month_9 variable is a dummy
variable, hence the step-function-like plot. We can also visualize the dependency in 3D, as
shown in the following code:

targets = ['return_1m', 'return_3m']
target_feature = [X_dummies_clean.columns.get_loc(t) for t in targets]
pdp, axes = partial_dependence(gb_clf,
 target_feature,
 X=X_dummies_clean,
 grid_resolution=100)

Gradient Boosting Machines Chapter 11

[345]

XX, YY = np.meshgrid(axes[0], axes[1])
Z = pdp[0].reshape(list(map(np.size, axes))).T

fig = plt.figure(figsize=(14, 8))
ax = Axes3D(fig)
surf = ax.plot_surface(XX, YY, Z,
 rstride=1,
 cstride=1,
 cmap=plt.cm.BuPu,
 edgecolor='k')
ax.set_xlabel(' '.join(targets[0].split('_')).capitalize())
ax.set_ylabel(' '.join(targets[1].split('_')).capitalize())
ax.set_zlabel('Partial Dependence')
ax.view_init(elev=22, azim=30)

This produces the following 3D plot of the partial dependence of the 1-month return
direction on lagged 1-month and 3-months returns:

Gradient Boosting Machines Chapter 11

[346]

SHapley Additive exPlanations
At the 2017 NIPS conference, Scott Lundberg and Su-In Lee from the University of
Washington presented a new and more accurate approach to explaining the contribution of
individual features to the output of tree ensemble models called SHapley Additive
exPlanations, or SHAP values.

This new algorithm departs from the observation that feature-attribution methods for tree
ensembles, such as the ones we looked at earlier, are inconsistent—that is, a change in a
model that increases the impact of a feature on the output can lower the importance values
for this feature (see the references on GitHub for detailed illustrations of this).

SHAP values unify ideas from collaborative game theory and local explanations, and have
been shown to be theoretically optimal, consistent, and locally accurate based on
expectations. Most importantly, Lundberg and Lee have developed an algorithm that
manages to reduce the complexity of computing these model-agnostic, additive feature-
attribution methods from O(TLDM) to O(TLD2), where T and M are the number of trees and
features, respectively, and D and L are the maximum depth and number of leaves across
the trees. This important innovation permits the explanation of predictions from previously
intractable models with thousands of trees and features in a fraction of a second. An open
source implementation became available in late 2017 and is compatible
with XGBoost, LightGBM, CatBoost, and sklearn tree models.

Shapley values originated in game theory as a technique for assigning a value to each
player in a collaborative game that reflects their contribution to the team's success. SHAP
values are an adaptation of the game theory concept to tree-based models and are
calculated for each feature and each sample. They measure how a feature contributes to the
model output for a given observation. For this reason, SHAP values provide differentiated
insights into how the impact of a feature varies across samples, which is important given
the role of interaction effects in these nonlinear models.

How to summarize SHAP values by feature
To get a high-level overview of the feature importance across a number of samples, there
are two ways to plot the SHAP values: a simple average across all samples that resembles
the global feature-importance measures computed previously (as shown in the left-hand
panel of the following screenshot), or a scatter graph to display the impact of every feature
for every sample (as shown in the right-hand panel of the following screenshot). They are
very straightforward to produce using a trained model of a compatible library and
matching input data, as shown in the following code:

load JS visualization code to notebook

Gradient Boosting Machines Chapter 11

[347]

shap.initjs()

explain the model's predictions using SHAP values
explainer = shap.TreeExplainer(model)
shap_values = explainer.shap_values(X_test)

shap.summary_plot(shap_values, X_test, show=False)

The scatter plot on the right of the following screenshot sorts features by their total SHAP
values across all samples, and then shows how each feature impacts the model output as
measured by the SHAP value as a function of the feature's value, represented by its color,
where red represents high and blue represents low values relative to the feature's range:

How to use force plots to explain a prediction
The following force plot shows the cumulative impact of various features and their values
on the model output, which in this case was 0.6, quite a bit higher than the base value of
0.13 (the average model output over the provided dataset). Features highlighted in red
increase the output. The month being October is the most important feature and increases
the output from 0.338 to 0.537, whereas the year being 2017 reduces the output.

Gradient Boosting Machines Chapter 11

[348]

Hence, we obtain a detailed breakdown of how the model arrived at a specific prediction,
as shown in the following image:

We can also compute force plots for numerous data points or predictions at a time and use
a clustered visualization to gain insights into how prevalent certain influence patterns are
across the dataset. The following plot shows the force plots for the first 1,000 observations
rotated by 90 degrees, stacked horizontally, and ordered by the impact of different features
on the outcome for the given observation. The implementation uses hierarchical
agglomerative clustering of data points on the feature SHAP values to identify these
patterns, and displays the result interactively for exploratory analysis (see the notebook), as
shown in the following code:

shap.force_plot(explainer.expected_value, shap_values[:1000,:],
X_test.iloc[:1000])

This produces the following output:

Gradient Boosting Machines Chapter 11

[349]

How to analyze feature interaction
Lastly, SHAP values allow us to gain additional insights into the interaction effects between
different features by separating these interactions from the main effects. The
shap.dependence_plot can be defined as follows:

shap.dependence_plot("return_1m", shap_values, X_test, interaction_index=2,
title='Interaction between 1- and 3-Month Returns')

It displays how different values for 1-month returns (on the x axis) affect the outcome
(SHAP value on the y axis), differentiated by 3-month returns:

SHAP values provide granular feature attribution at the level of each individual prediction,
and enable much richer inspection of complex models through (interactive) visualization.
The SHAP summary scatterplot displayed at the beginning of this section offers much more
differentiated insights than a global feature-importance bar chart. Force plots of individual
clustered predictions allow for more detailed analysis, while SHAP dependence
plots capture interaction effects and, as a result, provide more accurate and detailed results
than partial dependence plots.

Gradient Boosting Machines Chapter 11

[350]

The limitations of SHAP values, as with any current feature-importance measure, concern
the attribution of the influence of variables that are highly correlated because their similar
impact could be broken down in arbitrary ways.

Summary
In this chapter, we explored the gradient boosting algorithm, which is used to build
ensembles in a sequential manner, adding a shallow decision tree that only uses a very
small number of features to improve on the predictions that have been made. We saw how
gradient boosting trees can be very flexibly applied to a broad range of loss functions and
offer many opportunities to tune the model to a given dataset and learning task.

Recent implementations have greatly facilitated the use of gradient boosting by accelerating
the training process and offering more consistent and detailed insights into the importance
of features and the drivers of individual predictions. In the next chapter, we will turn to
Bayesian approaches to ML.

12
Unsupervised Learning

In Chapter 6, Machine Learning Process, we discussed how unsupervised learning adds
value by uncovering structures in the data without an outcome variable, such as a teacher,
to guide the search process. This task contrasts with the setting for supervised learning that
we focused on in the last several chapters.

Unsupervised learning algorithms can be useful when a dataset contains only features and
no measurement of the outcome, or when we want to extract information independent of
the outcome. Instead of predicting future outcomes, the goal is to study an informative
representation of the data that is useful for solving another task, including the exploration
of a dataset.

Examples include identifying topics to summarize documents (see Chapter 14, Topic
Modeling), reducing the number of features to reduce the risk of overfitting and the
computational cost for supervised learning, or grouping similar observations, as illustrated
by the use of clustering for asset allocation at the end of this chapter.

Dimensionality reduction and clustering are the main tasks for unsupervised learning:

Dimensionality reduction transforms the existing features into a new, smaller
set, while minimizing the loss of information. A broad range of algorithms exists
that differ only in how they measure the loss of information, whether they apply
linear or non-linear transformations, or the constraints they impose on the new
feature set.
Clustering algorithms identify and group similar observations or features
instead of identifying new features. Algorithms differ in how they define the
similarity of observations and their assumptions about the resulting groups.

Unsupervised Learning Chapter 12

[352]

More specifically, this chapter covers the following:

How Principal Component Analysis (PCA) and Independent Component
Analysis (ICA) perform linear dimensionality reduction
How to apply PCA to identify risk factors and eigen portfolios from asset returns
How to use non-linear manifold learning to summarize high-dimensional data
for effective visualization
How to use t-SNE and UMAP to explore high-dimensional alternative image
data
How k-Means, hierarchical, and density-based clustering algorithms work
How to use agglomerative clustering to build robust portfolios according to
hierarchical risk parity

The code samples for each section are in the directory of the online
GitHub repository for this chapter at https:/ /github. com/
PacktPublishing/ Hands- On-Machine- Learning- for- Algorithmic-
Trading.

Dimensionality reduction
In linear algebra terms, the features of a dataset create a vector space whose dimensionality
corresponds to the number of linearly independent columns (assuming there are more
observations than features). Two columns are linearly dependent when they are perfectly
correlated so that one can be computed from the other using the linear operations of
addition and multiplication.

In other words, they are parallel vectors that represent the same rather than different
directions or axes and only constitute a single dimension. Similarly, if one variable is a
linear combination of several others, then it is an element of the vector space created by
those columns, rather than adding a new dimension of its own.

https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading

Unsupervised Learning Chapter 12

[353]

The number of dimensions of a dataset matter because each new dimension can add a
signal concerning an outcome. However, there is also a downside known as the curse of
dimensionality: as the number of independent features grows while the number of
observations remains constant, the average distance between data points also grows, and
the density of the feature space drops exponentially.

The implications for machine learning are dramatic because prediction becomes much
harder when observations are more distant; that is, different to each other. The next section
addresses the resulting challenges.

Dimensionality reduction seeks to represent the information in the data more efficiently by
using fewer features. To this end, algorithms project the data to a lower-dimensional space
while discarding variation in the data that is not informative, or by identifying a lower-
dimensional subspace or manifold on or near which the data lives.

A manifold is a space that locally resembles Euclidean space. One-dimensional manifolds
include lines and circles (but not screenshots of eight, due to the crossing point). The
manifold hypothesis maintains that high-dimensional data often resides in a lower-
dimensional space that, if identified, permits a faithful representation of the data in this
subspace.

Dimensionality reduction thus compresses the data by finding a different, smaller set of
variables that capture what matters most in the original features to minimize the loss of
information. Compression helps counter the curse of dimensionality, economizes on
memory, and permits the visualization of salient aspects of higher-dimensional data that is
otherwise very difficult to explore.

Unsupervised Learning Chapter 12

[354]

Linear and non-linear algorithms
Dimensionality reduction algorithms differ in the constraints they impose on the new
variables and how they aim to minimize the loss of information:

Linear algorithms such as PCA and ICA constrain the new variables to be linear
combinations of the original features; that is, hyperplanes in a lower-dimensional
space. Whereas PCA requires the new features to be uncorrelated, ICA goes
further and imposes statistical independence—the absence of both linear and
non-linear relationships. The following screenshot illustrates how PCA projects
three-dimensional features into a two-dimensional space:

Non-linear algorithms are not restricted to hyperplanes and can capture more
complex structure in the data. However, given the infinite number of options, the
algorithms still need to make assumptions to arrive at a solution. In this section,
we show how t-distributed Stochastic Neighbor Embedding (t-SNE) and
Uniform Manifold Approximation and Projection (UMAP) are very useful for
visualizing higher-dimensional data. The following screenshot illustrates how
manifold learning identifies a two-dimensional sub-space in the three-
dimensional feature space (the manifold_learning notebook illustrates the use
of additional algorithms, including local linear embedding):

Unsupervised Learning Chapter 12

[355]

The curse of dimensionality
An increase in the number of dimensions of a dataset means there are more entries in the
vector of features that represents each observation in the corresponding Euclidean space.
We measure the distance in a vector space using Euclidean distance, also known as the L2
norm, which we applied to the vector of linear regression coefficients to train a regularized
Ridge Regression model.

The Euclidean distance between two n-dimensional vectors with Cartesian coordinates p =
(p1, p2, ..., pn) and q = (q1, q2, ..., qn) is computed using the familiar formula developed by
Pythagoras:

Hence, each new dimension adds a non-negative term to the sum, so that the distance
increases with the number of dimensions for distinct vectors. In other words, as the number
of features grows for a given number of observations, the feature space becomes
increasingly sparse; that is, less dense or emptier. On the flip side, the lower data density
requires more observations to keep the average distance between data points the same.

Unsupervised Learning Chapter 12

[356]

The following chart shows how many data points we need to maintain the average distance
of 10 observations uniformly distributed on a line. It increases exponentially from 101 in a
single dimension to 102 in two and 103 in three dimensions, as the data needs to expand by a
factor of 10 each time we add a new dimension:

The curse_of_dimensionality notebook in the GitHub repo folder for this section
simulates how the average and minimum distances between data points increase as the
number of dimensions grows:

The simulation draws features in the range [0, 1] from uncorrelated uniform or correlated
normal distributions, and gradually increases the number of features to 2,500. The average
distance between data points increases to over 11 times the feature range for features drawn
from the normal distribution, and to over 20 times in the (extreme) case of uncorrelated
uniform distribution.

Unsupervised Learning Chapter 12

[357]

When the distance between observations grows, supervised machine learning becomes
more difficult because predictions for new samples are less likely to be based on learning
from similar training features. Put differently, the number of possible unique rows grows
exponentially as the number of features increases, which makes it so much harder to
efficiently sample the space.

Similarly, the complexity of the functions learned by flexible algorithms that make fewer
assumptions about the actual relationship grows exponentially with the number of
dimensions.

Flexible algorithms include the tree-based models we saw in Chapter 10, Decision Trees and
Random Forests, and Chapter 11, Gradient Boosting Machines, and the deep neural networks
that we will cover from Chapter 17, Deep Learning onward. The variance of these
algorithms increases as they get more opportunity to overfit to noise in more dimensions,
resulting in poor generalization performance.

In practice, features are correlated, often substantially so, or do not exhibit much variation.
For these reasons, dimensionality reduction helps to compress the data without losing
much of the signal, and combat the curse while also economizing on memory. In these
cases, it complements the use of regularization to manage prediction error due to variance
and model complexity.

The critical question that we take on in the following section then becomes: what are the
best ways to find a lower-dimensional representation of the data that loses as little
information as possible?

Linear dimensionality reduction
Linear dimensionality reduction algorithms compute linear combinations that translate,
rotate, and rescale the original features to capture significant variation in the data, subject to
constraints on the characteristics of the new features.

Principal Component Analysis (PCA), invented in 1901 by Karl Pearson, finds new
features that reflect directions of maximal variance in the data while being mutually
uncorrelated, or orthogonal.

Independent Component Analysis (ICA), in contrast, originated in signal processing in the
1980s, with the goal of separating different signals while imposing the stronger constraint
of statistical independence.

Unsupervised Learning Chapter 12

[358]

This section introduces these two algorithms and then illustrates how to apply PCA to asset
returns to learn risk factors from the data, and to build so-called eigen portfolios for
systematic trading strategies.

Principal Component Analysis
PCA finds principal components as linear combinations of the existing features and uses
these components to represent the original data. The number of components is a
hyperparameter that determines the target dimensionality and needs to be equal to or
smaller than the number of observations or columns, whichever is smaller.

PCA aims to capture most of the variance in the data, to make it easy to recover the original
features and so that each component adds information. It reduces dimensionality by
projecting the original data into the principal component space.

The PCA algorithm works by identifying a sequence of principal components, each of
which aligns with the direction of maximum variance in the data after accounting for
variation captured by previously-computed components. The sequential optimization also
ensures that new components are not correlated with existing components so that the
resulting set constitutes an orthogonal basis for a vector space.

This new basis corresponds to a rotated version of the original basis so that the new axis
point in the direction of successively decreasing variance. The decline in the amount of
variance of the original data explained by each principal component reflects the extent of
correlation among the original features.

The number of components that capture, for example, 95% of the original variation relative
to the total number of features provides an insight into the linearly-independent
information in the original data.

Visualizing PCA in 2D
The following screenshot illustrates several aspects of PCA for a two-dimensional random
dataset (see the pca_key_ideas notebook):

Unsupervised Learning Chapter 12

[359]

The left panel shows how the first and second principal components align with
the directions of maximum variance while being orthogonal.
The central panel shows how the first principal component minimizes the
reconstruction error, measured as the sum of the distances between the data
points and the new axis.
Finally, the right panel illustrates supervised OLS, which approximates the
outcome variable (here we choose x2) by a (one-dimensional) hyperplane
computed from the (single) feature. The vertical lines highlight how OLS
minimizes the distance along the outcome axis, in contrast with PCA, which
minimizes the distances orthogonal to the hyperplane.

The assumptions made by PCA
PCA makes several assumptions that are important to keep in mind. These include the
following:

High variance implies a high signal-to-noise ratio
The data is standardized so that the variance is comparable across features
Linear transformations capture the relevant aspects of the data
Higher-order statistics beyond the first and second moment do not matter, which
implies that the data has a normal distribution

The emphasis on the first and second moments aligns with standard risk/return metrics,
but the normality assumption may conflict with the characteristics of market data.

Unsupervised Learning Chapter 12

[360]

How the PCA algorithm works
The algorithm finds vectors to create a hyperplane of target dimensionality that minimizes
the reconstruction error, measured as the sum of the squared distances of the data points to
the plane. As illustrated above, this goal corresponds to finding a sequence of vectors that
align with directions of maximum retained variance given the other components while
ensuring all principal components are mutually orthogonal.

In practice, the algorithm solves the problem either by computing the eigenvectors of the
covariance matrix or using the singular value decomposition.

We illustrate the computation using a randomly generated three-dimensional ellipse with
100 data points, shown in the left panel of the following screenshot, including the two-
dimensional hyperplane defined by the first two principal components (see
the the_math_behind_pca notebook for the following code samples):

 Three-dimensional ellipse and two-dimensional hyperplane

PCA based on the covariance matrix
We first compute the principal components using the square covariance matrix with the
pairwise sample covariances for the features xi, xj, i, j = 1, ..., n as entries in row i and
column j:

Unsupervised Learning Chapter 12

[361]

For a square matrix M of n dimensions, we define the eigenvectors ωi and eigenvalues λi,
i=1, ..., n as follows:

Hence, we can represent the matrix M using eigenvectors and eigenvalues, where W is a
matrix that contains the eigenvectors as column vectors, and L is a matrix that contains the
λi as diagonal entries (and 0s otherwise). We define the eigendecomposition as follows:

Using NumPy, we implement this as follows, where the pandas DataFrame contains the
100 data points of the ellipse:

compute covariance matrix:
cov = np.cov(data, rowvar=False) # expects variables in rows by default
cov.shape
(3, 3)

Next, we calculate the eigenvectors and eigenvalues of the covariance matrix. The
eigenvectors contain the principal components (where the sign is arbitrary):

eigen_values, eigen_vectors = eig(cov)
eigen_vectors
array([[0.71409739, -0.66929454, -0.20520656],
[-0.70000234, -0.68597301, -0.1985894],
[0.00785136, -0.28545725, 0.95835928]])

We can compare the result with the result obtained from sklearn, and find that they match
in absolute terms:

pca = PCA()
pca.fit(data)
C = pca.components_.T # columns = principal components
C
array([[0.71409739, 0.66929454, 0.20520656],
[-0.70000234, 0.68597301, 0.1985894],
[0.00785136, 0.28545725, -0.95835928]])
np.allclose(np.abs(C), np.abs(eigen_vectors))
True

Unsupervised Learning Chapter 12

[362]

We can also verify the eigendecomposition, starting with the diagonal matrix L that
contains the eigenvalues:

eigenvalue matrix
ev = np.zeros((3, 3))
np.fill_diagonal(ev, eigen_values)
ev # diagonal matrix
array([[1.92923132, 0. , 0.],
[0. , 0.55811089, 0.],
[0. , 0. , 0.00581353]])

We find that the result does indeed hold:

decomposition = eigen_vectors.dot(ev).dot(inv(eigen_vectors))
np.allclose(cov, decomposition)

PCA using Singular Value Decomposition
Next, we'll look at the alternative computation using Singular Value Decomposition
(SVD). This algorithm is slower when the number of observations is greater than the
number of features (the typical case), but yields better numerical stability, especially when
some of the features are strongly correlated (often the reason to use PCA in the first place).

SVD generalizes the eigendecomposition that we just applied to the square and symmetric
covariance matrix to the more general case of m x n rectangular matrices. It has the form
shown at the center of the following diagram. The diagonal values of Σ are the singular
values, and the transpose of V* contains the principal components as column vectors:

Unsupervised Learning Chapter 12

[363]

In this case, we need to make sure our data is centered with mean zero (the computation of
the covariance preceding took care of this):

n_features = data.shape[1]
data_ = data - data.mean(axis=0
Using the centered data, we compute the singular value decomposition:
U, s, Vt = svd(data_)
U.shape, s.shape, Vt.shape
((100, 100), (3,), (3, 3))
We can convert the vector s that only contains the singular values into an
nxm matrix and show that the decomposition works:
S = np.zeros_like(data_)
S[:n_features, :n_features] = np.diag(s)
S.shape
(100, 3)

We find that the decomposition does indeed reproduce the standardized data:

np.allclose(data_, U.dot(S).dot(Vt))
True

Lastly, we confirm that the columns of the transpose of V* contain the principal
components:

np.allclose(np.abs(C), np.abs(Vt.T))
True

In the next section, we show how sklearn implements PCA.

PCA with sklearn
The sklearn.decomposition.PCA implementation follows the standard API based on
the fit() and transform() methods, which compute the desired number of principal
components and project the data into the component space, respectively. The convenience
method fit_transform() accomplishes this in a single step.

Unsupervised Learning Chapter 12

[364]

PCA offers three different algorithms that can be specified using the svd_solver
parameter:

Full computes the exact SVD using the LAPACK solver provided by SciPy
Arpack runs a truncated version suitable for computing less than the full
number of components
Randomized uses a sampling-based algorithm that is more efficient when the
dataset has more than 500 observations and features, and the goal is to compute
less than 80% of the components
Auto uses randomized where most efficient, otherwise, it uses the full SVD

See references on GitHub for algorithmic implementation details.

Other key configuration parameters of the PCA object are as follows:

n_components: These compute all principal components by passing None (the
default), or limit the number to int. For svd_solver=full, there are two
additional options: a float in the interval [0, 1] computes the number of
components required to retain the corresponding share of the variance in the
data, and the mle option estimates the number of dimensions using maximum
likelihood.
whiten: If True, it standardizes the component vectors to unit variance that, in
some cases, can be useful for use in a predictive model (the default is False).

To compute the first two principal components of the three-dimensional ellipsis and project
the data into the new space, use fit_transform() as follows:

pca = PCA(n_components=2)
projected_data = pca.fit_transform(data)
projected_data.shape
(100, 2)

The explained variance of the first two components is very close to 100%:

pca2.explained_variance_ratio_
array([0.77381099, 0.22385721])

The screenshot at the beginning of this section shows the projection of the data into the new
two-dimensional space.

Unsupervised Learning Chapter 12

[365]

Independent Component Analysis
Independent Component Analysis (ICA) is another linear algorithm that identifies a new
basis on which to represent the original data, but pursues a different objective to PCA.

ICA emerged in signal processing, and the problem it aims to solve is called blind source
separation. It is typically framed as the cocktail party problem, in which a given number of
guests are speaking at the same time so that a single microphone would record overlapping
signals. ICA assumes there are as many different microphones as there are speakers, each
placed at different locations so as to record a different mix of the signals. ICA then aims to
recover the individual signals from the different recordings.

In other words, there are n original signals and an unknown square mixing matrix A that
produces an n-dimensional set of m observations, so that:

The goal is to find the matrix W=A-1 that untangles the mixed signals to recover the sources.

The ability to uniquely determine the matrix W hinges on the non-Gaussian distribution of
the data. Otherwise, W could be rotated arbitrarily given the multivariate normal
distribution's symmetry under rotation.

Furthermore, ICA assumes the mixed signal is the sum of its components and is unable to
identify Gaussian components because their sum is also normally distributed.

ICA assumptions
ICA makes the following critical assumptions:

The sources of the signals are statistically independent
Linear transformations are sufficient to capture the relevant information
The independent components do not have a normal distribution
The mixing matrix A can be inverted

ICA also requires the data to be centered and whitened; that is, to be mutually uncorrelated
with unit variance. Preprocessing the data using PCA as outlined above achieves the
required transformations.

Unsupervised Learning Chapter 12

[366]

The ICA algorithm
FastICA, used by sklearn, is a fixed-point algorithm that uses higher-order statistics to
recover the independent sources. In particular, it maximizes the distance to a normal
distribution for each component as a proxy for independence.

An alternative algorithm called InfoMax minimizes the mutual information between
components as a measure of statistical independence.

ICA with sklearn
The ICA implementation by sklearn uses the same interface as PCA, so there is little to add.
Note that there is no measure of explained variance because ICA does not compute
components successively. Instead, each component aims to capture independent aspects of
the data.

PCA for algorithmic trading
PCA is useful for algorithmic trading in several respects. These include the data-driven
derivation of risk factors by applying PCA to asset returns, and the construction of
uncorrelated portfolios based on the principal components of the correlation matrix of asset
returns.

Data-driven risk factors
In Chapter 7, Linear Models, we explored risk factor models used in quantitative finance to
capture the main drivers of returns. These models explain differences in returns on assets
based on their exposure to systematic risk factors and the rewards associated with these
factors.

In particular, we explored the Fama-French approach, which specifies factors based on
prior knowledge about the empirical behavior of average returns, treats these factors as
observable, and then estimates risk model coefficients using linear regression. An
alternative approach treats risk factors as latent variables and uses factor analytic
techniques such as PCA to simultaneously estimate the factors and how they drive returns
from historical returns.

In this section, we will review how this method derives factors in a purely statistical or
data-driven way, with the advantage of not requiring ex-ante knowledge of the behavior of
asset returns (see the pca and risk_factor notebook models for details).

Unsupervised Learning Chapter 12

[367]

We will use the Quandl stock price data and select the daily adjusted close prices of the 500
stocks with the largest market capitalization and data for the 2010-18 period. We then
compute the daily returns as follows:

idx = pd.IndexSlice
with pd.HDFStore('../../data/assets.h5') as store:
stocks = store['us_equities/stocks'].marketcap.nlargest(500)
returns = (store['quandl/wiki/prices']
.loc[idx['2010': '2018', stocks.index], 'adj_close']
.unstack('ticker')
.pct_change())

We obtain 351 stocks and returns for over 2,000 trading days:

returns.info()
DatetimeIndex: 2072 entries, 2010-01-04 to 2018-03-27
Columns: 351 entries, A to ZTS

PCA is sensitive to outliers, so we winsorize the data at the 2.5% and 97.5% quantiles:

returns = returns.clip(lower=returns.quantile(q=.025),
upper=returns.quantile(q=.975),
axis=1)

PCA does not permit missing data, so we will remove stocks that do not have data for at
least 95% of the time period, and in a second step, remove trading days that do not have
observations on at least 95% of the remaining stocks:

returns = returns.dropna(thresh=int(returns.shape[0] * .95), axis=1)
returns = returns.dropna(thresh=int(returns.shape[1] * .95))

We are left with 314 equity return series covering a similar period:

returns.info()
DatetimeIndex: 2070 entries, 2010-01-05 to 2018-03-27
Columns: 314 entries, A to ZBH

We impute any remaining missing values using the average return for any given trading
day:

daily_avg = returns.mean(1)
returns = returns.apply(lambda x: x.fillna(daily_avg))

Unsupervised Learning Chapter 12

[368]

Now we are ready to fit the principal components model to the asset returns using default
parameters to compute all components using the full SVD algorithm:

pca = PCA()
pca.fit(returns)
PCA(copy=True, iterated_power='auto', n_components=None, random_state=None,
svd_solver='auto', tol=0.0, whiten=False)

We find that the most important factor explains around 40% of the daily return variation.
The dominant factor is usually interpreted as the market, whereas the remaining factors can
be interpreted as industry or style factors, in line with our discussion in Chapter 5, Strategy
Evaluation, and Chapter 7, Linear Models, depending on the results of closer inspection (see
the next example).

The plot on the right shows the cumulative explained variance, and indicates that around
10 factors explain 60% of the returns of this large cross-section of stocks:

The notebook contains a simulation for a broader cross-section of stocks and the longer
2000-18 time period. It finds that, on average, the first three components explained 25%,
10%, and 5% of 500 randomly selected stocks.

The cumulative plot shows a typical elbow pattern that can help identify a suitable target
dimensionality because it indicates that additional components add less explanatory value.

Unsupervised Learning Chapter 12

[369]

We can select the top two principal components to verify that they are indeed uncorrelated:

risk_factors = pd.DataFrame(pca.transform(returns)[:, :2],
columns=['Principal Component 1', 'Principal Component 2'],
index=returns.index)
risk_factors['Principal Component 1'].corr(risk_factors['Principal
Component 2'])
7.773256996252084e-15

Moreover, we can plot the time series to highlight how each factor captures different
volatility patterns:

A risk factor model would employ a subset of the principal components as features to
predict future returns, similar to our approach in Chapter 7, Linear Models – Regression and
Classification.

Eigen portfolios
Another application of PCA involves the covariance matrix of the normalized returns. The
principal components of the correlation matrix capture most of the covariation among
assets in descending order and are mutually uncorrelated. Moreover, we can use
standardized principal components as portfolio weights.

https://cdp.packtpub.com/hands_on_machine_learning_for_algorithmic_trading/wp-admin/post.php?post=572&action=edit#post_28

Unsupervised Learning Chapter 12

[370]

Let's use the 30 largest stocks with data for the 2010-2018 period to facilitate the exposition:

idx = pd.IndexSlice
with pd.HDFStore('../../data/assets.h5') as store:
stocks = store['us_equities/stocks'].marketcap.nlargest(30)
returns = (store['quandl/wiki/prices']
.loc[idx['2010': '2018', stocks.index], 'adj_close']
.unstack('ticker')
.pct_change())

We again winsorize and also normalize the returns:

normed_returns = scale(returns
 .clip(lower=returns.quantile(q=.025),
 upper=returns.quantile(q=.975),
 axis=1)
.apply(lambda x: x.sub(x.mean()).div(x.std())))

After dropping assets and trading days as in the previous example, we are left with 23
assets and over 2,000 trading days. We estimate all principal components, and find that the
two largest explain 55.9% and 15.5% of the covariation, respectively:

pca.fit(cov)
pd.Series(pca.explained_variance_ratio_).head()
0 55.91%
1 15.52%
2 5.36%
3 4.85%
4 3.32%

Next, we select and normalize the four largest components so that they sum to 1 and we
can use them as weights for portfolios that we can compare to an equal-weighted portfolio
formed from all stocks:

top4 = pd.DataFrame(pca.components_[:4], columns=cov.columns)
eigen_portfolios = top4.div(top4.sum(1), axis=0)
eigen_portfolios.index = [f'Portfolio {i}' for i in range(1, 5)]

The weights show distinct emphasis—for example, Portfolio 3 puts large weights on
Mastercard and Visa, the two payment processors in the sample, whereas Portfolio 2 has
more exposure to technology companies:

Unsupervised Learning Chapter 12

[371]

When comparing the performance of each portfolio over the sample period to The Market
consisting of our small sample, we find that portfolio 1 performs very similarly, whereas
the other portfolios capture different return patterns:

Comparing performances of each portfolio

Unsupervised Learning Chapter 12

[372]

Manifold learning
Linear dimensionality reduction projects the original data onto a lower-dimensional
hyperplane that aligns with informative directions in the data. The focus on linear
transformations simplifies the computation and echoes common financial metrics, such as
PCA's goal to capture the maximum variance.

However, linear approaches will naturally ignore signal reflected in non-linear
relationships in the data. Such relationships are very important in alternative datasets
containing, for example, image or text data. Detecting such relationships during
exploratory analysis can provide important clues about the data's potential signal content.

In contrast, the manifold hypothesis emphasizes that high-dimensional data often lies on or
near a lower-dimensional non-linear manifold that is embedded in the higher dimensional
space. The two-dimensional swiss roll displayed in the screenshot at the beginning of this
section illustrates such a topological structure.

Manifold learning aims to find the manifold of intrinsic dimensionality and then represent
the data in this subspace. A simplified example uses a road as one-dimensional manifolds
in a three-dimensional space and identifies data points using house numbers as local
coordinates.

Several techniques approximate a lower dimensional manifold. One example is locally-
linear embedding (LLE), which was developed in 2000 by Sam Roweis and Lawrence Saul
and used to unroll the swiss roll in the previous screenshot (see examples in
the manifold_learning_lle notebook).

For each data point, LLE identifies a given number of nearest neighbors and computes
weights that represent each point as a linear combination of its neighbors. It finds a lower-
dimensional embedding by linearly projecting each neighborhood onto global internal
coordinates on the lower-dimensional manifold, and can be thought of as a sequence of
PCA applications.

Visualization requires the reduction to at least three dimensions, possibly below the
intrinsic dimensionality, and poses the challenge of faithfully representing local and global
structure. This challenge relates to the increasing distance associated with the curse of
dimensionality. While the volume of a sphere expands exponentially with the number of
dimensions, the space in lower dimensions available to represent high-dimensional data is
much more limited.

Unsupervised Learning Chapter 12

[373]

For example, in 12 dimensions, there can be 13 equidistant points, but in two dimensions
there can only be three that form a triangle with sides of equal length. Hence, accurately
reflecting the distance of one point to its high-dimensional neighbors in lower dimensions
risks distorting the relations among all other points. The result is the crowding problem: to
maintain global distances, local points may need to be placed too closely together, and vice
versa.

The following two sections cover techniques that have made progress in addressing the
crowding problem for the visualization of complex datasets. We will use the fashion MNIST
dataset, a more sophisticated alternative to the classic handwritten digit MNIST benchmark
data used for computer vision. It contains 60,000 train and 10,000 test images of fashion
objects in 10 classes (see following samples):

The goal of a manifold learning algorithm for this data is to detect whether the classes lie on
distinct manifolds, to facilitate their recognition and differentiation.

Unsupervised Learning Chapter 12

[374]

t-SNE
The t-distributed stochastic neighbor embedding is an award-winning algorithm developed
in 2010 by Laurens van der Maaten and Geoff Hinton to detect patterns in high-
dimensional data. It takes a probabilistic, non-linear approach to locating data on several
different but related low-dimensional manifolds.

The algorithm emphasizes keeping similar points together in low dimensions, as opposed
to maintaining the distance between points that are apart in high dimensions, which results
from algorithms such as PCA that minimize squared distances.

The algorithm proceeds by converting high-dimensional distances to (conditional)
probabilities, where high probabilities imply low distance and reflect the likelihood of
sampling two points based on similarity. It accomplishes this by positioning a normal
distribution over each point and computing the density for a point and each neighbor,
where the perplexity parameter controls the effective number of neighbors.

In a second step, it arranges points in low dimensions and uses similarly computed low-
dimensional probabilities to match the high-dimensional distribution. It measures the
difference between the distributions using the Kullback-Leibler divergence, which puts a
high penalty on misplacing similar points in low dimensions.

The low-dimensional probabilities use a Student's t-distribution with one degree of
freedom, as it has fatter tails that reduce the penalty of misplacing points that are more
distant in high dimensions, to manage the crowding problem.

The upper panels of the following chart show how t-SNE is able to differentiate between
the image classes. A higher perplexity value increases the number of neighbors used to
compute local structure, and gradually results in more emphasis on global relationships:

Unsupervised Learning Chapter 12

[375]

t-SNE is currently the state-of-the-art in high-dimensional data visualization. Weaknesses
include the computational complexity that scales quadratically in the number n of points
because it evaluates all pairwise distances, but a subsequent tree-based implementation has
reduced the cost to n log n.

t-SNE does not facilitate the projection of new data points into the low-dimensional space.
The compressed output is not a very useful input for distance-based or density-based
cluster algorithms, because t-SNE treats small and large distances differently.

UMAP
Uniform Manifold Approximation and Projection is a more recent algorithm for
visualization and general dimensionality reduction. It assumes the data is uniformly
distributed on a locally-connected manifold and looks for the closest low-dimensional
equivalent using fuzzy topology. It uses a neighbors parameter that impacts the result
similarly as perplexity above.

It is faster, and hence scales better to large datasets than t-SNE, and sometimes preserves
global structure than better than t-SNE. It can also work with different distance functions,
including, for example, cosine similarity, which is used to measure the distance between
word count vectors.

Unsupervised Learning Chapter 12

[376]

The four charts in the bottom row of the previous figure illustrates how UMAP does indeed
move the different clusters further apart, whereas t-SNE provides more granular insight
into the local structure.

The notebook also contains interactive Plotly visualizations for each algorithm, which
permit the exploration of the labels and identify which objects are placed close to each
other.

Clustering
Both clustering and dimensionality reduction summarize the data. As just discussed in
detail, dimensionality reduction compresses the data by representing it using new, fewer
features that capture the most relevant information. Clustering algorithms, by contrast,
assign existing observations to subgroups that consist of similar data points.

Clustering can serve to better understand the data through the lens of categories learned
from continuous variables. It also permits automatically categorizing new objects according
to the learned criteria. Examples of related applications include hierarchical taxonomies,
medical diagnostics, and customer segmentation.

Alternatively, clusters can be used to represent groups as prototypes, using (for example)
the midpoint of a cluster as the best representative of learned grouping. An example
application includes image compression.

Clustering algorithms differ with respect to their strategies for identifying groupings:

Combinatorial algorithms select the most coherent of different groupings of
observations
Probabilistic modeling estimates distributions that most likely generated the
clusters
Hierarchical clustering finds a sequence of nested clusters that optimizes
coherence at any given stage

Algorithms also differ in their notion of what constitutes a useful collection of objects,
which needs to match the data characteristics, domain, and the goal of the applications.
Types of groupings include the following:

Clearly separated groups of various shapes
Prototype-based or center-based compact clusters
Density-based clusters of arbitrary shape
Connectivity-based or graph-based clusters

Unsupervised Learning Chapter 12

[377]

Important additional aspects of a clustering algorithm include the following:

Whether it requires exclusive cluster membership
Whether it makes hard (binary) or soft (probabilistic) assignment
Whether it is complete and assigns all data points to clusters

The following sections introduce key algorithms, including k-Means, hierarchical, and
density-based clustering, as well as Gaussian mixture models. The clustering_algos
notebook compares the performance of these algorithms on different, labeled datasets to
highlight their strengths and weaknesses. It uses mutual information (see Chapter 6,
The Machine Learning Process) to measure the congruence of cluster assignments and labels.

k-Means clustering
k-Means is the most well-known clustering algorithm and was first proposed by Stuart
Lloyd at Bell Labs in 1957.

The algorithm finds K centroids and assigns each data point to exactly one cluster with the
goal of minimizing the within-cluster variance (called inertia). It typically uses Euclidean
distance, but other metrics can also be used. k-Means assumes that clusters are spherical
and of equal size, and ignores the covariance among features.

The problem is computationally difficult (np-hard) because there are KN ways to partition
the N observations into K clusters. The standard iterative algorithm delivers a local
optimum for a given K and proceeds as follows:

Randomly define K cluster centers and assign points to nearest centroid.1.
Repeat as follows:2.

For each cluster, compute the centroid as the average of the features
Assign each observation to the closest centroid

Convergence: assignments (or within-cluster variation) don't change.3.

Unsupervised Learning Chapter 12

[378]

The kmeans_implementation notebook shows how to code the algorithm using Python,
and visualizes the algorithm's iterative optimization. The following screenshot highlights
how the resulting centroids partition the feature space into areas called Voronoi which
delineate the clusters:

The result is optimal for the given initialization, but alternative starting positions will
produce different results. Hence, we compute multiple clusterings from different initial
values and select the solution that minimizes within-cluster variance.

k-Means requires continuous or one-hot encoded categorical variables. Distance metrics are
typically sensitive to scale so that standardizing features is necessary to make sure they
have equal weight.

The strengths of k-Means include its wide range of applicability, fast convergence, and
linear scalability to large data while producing clusters of even size.

The weaknesses include:

The need to tune the hyperparameter k
The lack of a guarantee to find a global optimum
Restrictive assumption that clusters are spheres and features are not correlated
Sensitivity to outliers

Unsupervised Learning Chapter 12

[379]

Evaluating cluster quality
Cluster quality metrics help select among alternative clustering results.
The kmeans_evaluation notebook illustrates the following options:

The k-Means objective function suggests we compare the evolution of the inertia1.
or within-cluster variance.
Initially, additional centroids decrease the inertia sharply because new clusters2.
improve the overall fit.
Once an appropriate number of clusters has been found (assuming it exists), new3.
centroids reduce the within-cluster variance by much less as they tend to split
natural groupings.
Hence, when k-Means finds a good cluster representation of the data, the inertia4.
tends to follow an elbow-shaped path similar to the explained variance ratio for
PCA, as shown in the following screenshot (see notebook for implementation
details):

Unsupervised Learning Chapter 12

[380]

The silhouette coefficient provides a more detailed picture of cluster quality. It answers the
question: how far are the points in the nearest cluster, relative to the points in the assigned
cluster?

To this end, it compares the mean intra-cluster distance (a) to the mean distance of the
nearest cluster (b) and computes the following score s:

The score can vary from between -1 and 1, but negative values are unlikely in practice
because they imply that the majority of points are assigned to the wrong cluster. A useful
visualization of the silhouette score compares the values for each data point to the global
average because it highlights the coherence of each cluster relative to the global
configuration. The rule of thumb is to avoid clusters with mean scores below the average
for all samples.

The following screenshot shows an excerpt from the silhouette plot for three and four
clusters, where the former highlights the poor fit of cluster 1 by sub-par contributions to the
global silhouette score, whereas all of the four clusters have some values that exhibit above
average scores:

Unsupervised Learning Chapter 12

[381]

In sum, given the usually unsupervised nature, it is necessary to vary the hyperparameters
of the cluster algorithms and evaluate the different results. It is also important to calibrate
the scale of the features, in particular when some should be given a higher weight and
should thus be measured on a larger scale.

Finally, to validate the robustness of the results, use subsets of data to identify whether
particular patterns emerge consistently.

Hierarchical clustering
Hierarchical clustering avoids the need to specify a target number of clusters because it
assumes that data can successively be merged into increasingly dissimilar clusters. It does
not pursue a global objective but decides incrementally how to produce a sequence of
nested clusters that range from a single cluster to clusters consisting of the individual data
points.

There are two approaches:

Agglomerative clustering proceeds bottom-up, sequentially merging two of the1.
remaining groups based on similarity
Divisive clustering works top-down and sequentially splits the remaining2.
clusters to produce the most distinct subgroups

Both groups produce N-1 hierarchical levels and facilitate the selection of a clustering at the
level that best partitions data into homogenous groups. We will focus on the more common
agglomerative clustering approach.

The agglomerative clustering algorithm departs from the individual data points and
computes a similarity matrix containing all mutual distances. It then takes N-1 steps until
there are no more distinct clusters, and each time updates the similarity matrix to substitute
elements that have been merged by the new cluster so that the matrix progressively
shrinks.

While hierarchical clustering does not have hyperparameters like k-Means, the measure of
dissimilarity between clusters (as opposed to individual data points) has an important
impact on the clustering result. The options differ as follows:

Single-link: the distance between nearest neighbors of two clusters
Complete link: the maximum distance between respective cluster members
Group average: the distance between averages for each group
Ward's method: minimizes within-cluster variance

Unsupervised Learning Chapter 12

[382]

Visualization – dendrograms
Hierarchical clustering provides insight into degrees of similarity among observations as it
continues to merge data. A significant change in the similarity metric from one merge to the
next suggests a natural clustering existed prior to this point.

The dendrogram visualizes the successive merges as a binary tree, displaying the
individual data points as leaves and the final merge as the root of the tree. It also shows
how the similarity monotonically decreases from bottom to top. Hence, it is natural to select
a clustering by cutting the dendrogram.

The following screenshot (see the hierarchical_clustering notebook for
implementation details) illustrates the dendrogram for the classic Iris dataset with four
classes and three features, using the four different distance metrics introduced precedingly:

It evaluates the fit of the hierarchical clustering using the cophenetic correlation coefficient,
which compares the pairwise distances among points and the cluster similarity metric at
which a pairwise merge occurred. A coefficient of 1 implies that closer points always merge
earlier.

Unsupervised Learning Chapter 12

[383]

Different linkage methods produce dendrograms of different appearance, so we cannot use
this visualization to compare results across methods. In addition, Ward's method, which
minimizes within-cluster variance, may not properly reflect the change in variance, but
rather the total variance, which may be misleading. Instead, other quality metrics such as
cophenetic correlation, or measures such as inertia (if aligned with the overall goal), may be
more appropriate.

The strengths of clustering include:

You do not need to specify the number of clusters
It offers insight about potential clustering by means of an intuitive visualization
It produces a hierarchy of clusters that can serve as taxonomy
It can be combined with k-Means to reduce the number of items at the start of the
agglomerative process

Weaknesses of hierarchical clustering include:

The high cost in terms of computation and memory because of the numerous
similarity matrix updates
It does not achieve the global optimum because all merges are final
The curse of dimensionality leads to difficulties with noisy, high-dimensional
data

Density-based clustering
Density-based clustering algorithms assign cluster membership based on proximity to other
cluster members. They pursue the goal of identifying dense regions of arbitrary shapes and
sizes. They do not require the specification of a certain number of clusters but instead rely
on parameters that define the size of a neighborhood and a density threshold (see
the density_based_clustering notebook for relevant code samples).

DBSCAN
Density-based spatial clustering of applications with noise (DBSCAN) was developed in
1996, and received the Test of Time award at the 2014 KDD conference because of the
attention it has received in both theory and practice.

It aims to identify core and non-core samples, where the former extend a cluster and the
latter are part of a cluster but do not have sufficient nearby neighbors to further grow the
cluster. Other samples are outliers and not assigned to any cluster.

Unsupervised Learning Chapter 12

[384]

It uses an eps parameter for the radius of the neighborhood and min_samples for the
number of members required for core samples. It is deterministic and exclusive and has
difficulties with clusters of different density and high-dimensional data. It can be
challenging to tune the parameters to the requisite density, especially as it is often not
constant.

Hierarchical DBSCAN
Hierarchical DBSCAN is a more recent development that assumes clusters are islands of
potentially differing density, to overcome the DBSCAN challenges just mentioned. It also
aims to identify the core and non-core samples. It uses the min_cluster_ size and
min_samples parameters to select a neighborhood and extend a cluster. The algorithm
iterates over multiple eps values and chooses the most stable clustering.

In addition to identifying clusters of varying density, it provides insight into the density
and hierarchical structure of the data.

The following screenshots show how DBSCAN and HDBSCAN are able to identify very
differently shaped clusters:

Gaussian mixture models
A Gaussian mixture model (GMM) is a generative model that assumes the data has been
generated by a mix of various multivariate normal distributions. The algorithm aims to
estimate the mean and covariance matrices of these distributions.

Unsupervised Learning Chapter 12

[385]

It generalizes the k-Means algorithm: it adds covariance among features so that clusters can
be ellipsoids rather than spheres, while the centroids are represented by the means of each
distribution. The GMM algorithm performs soft assignments because each point has the
probability to be a member of any cluster.

The expectation-maximization algorithm
GMM uses the expectation-maximization algorithm to identify the components of the
mixture of Gaussian distributions. The goal is to learn the probability distribution
parameters from unlabeled data.

The algorithm proceeds iteratively as follows:

Initialization—Assume random centroids (for example, using k-Means)1.
Repeat the following steps until convergence (that is, changes in assignments2.
drop below the threshold):

Expectation step: Soft assignment—compute probabilities for each
point from each distribution
Maximization step: Adjust normal-distribution parameters to make
data points most likely

The following screenshot shows the GMM cluster membership probabilities for the Iris
dataset as contour lines:

Unsupervised Learning Chapter 12

[386]

Hierarchical risk parity
The key idea of hierarchical risk parity is to use hierarchical clustering on the covariance
matrix in order to be able to group assets with similar correlations together, and reduce the
number of degrees of freedom by only considering similar assets as substitutes when
constructing the portfolio (see notebook and Python files in
the hierarchical_risk_parity subfolder for details).

The first step is to compute a distance matrix that represents proximity for correlated assets
and meets distance metric requirements. The resulting matrix becomes an input to the
SciPy hierarchical clustering function which computes the successive clusters using one of
several available methods discussed so far:

def get_distance_matrix(corr):
"""Compute distance matrix from correlation;
0 <= d[i,j] <= 1"""
return np.sqrt((1 - corr) / 2)
distance_matrix = get_distance_matrix(corr)
linkage_matrix = linkage(squareform(distance_matrix), 'single')

The linkage_matrix can be used as input to the seaborn.clustermap function to
visualize the resulting hierarchical clustering. The dendrogram displayed by seaborn
shows how individual assets and clusters of assets are merged based on their relative
distances:

clustergrid = sns.clustermap(distance_matrix,
method='single',
row_linkage=linkage_matrix,
col_linkage=linkage_matrix,
cmap=cmap, center=0)
sorted_idx = clustergrid.dendrogram_row.reordered_ind
sorted_tickers = corr.index[sorted_idx].tolist()

Unsupervised Learning Chapter 12

[387]

Heatmap

Compared to a seaborn.heatmap of the original correlation matrix, there is now
significantly more structure in the sorted data (right panel).

Using the tickers sorted according to the hierarchy induced by the clustering algorithm,
HRP now proceeds to compute a top-down inverse-variance allocation that successively
adjusts weights depending on the variance of the subclusters further down the tree:

def get_cluster_var(cov, cluster_items):
 """Compute variance per cluster"""
 cov_ = cov.loc[cluster_items, cluster_items] # matrix slice
 w_ = get_inverse_var_pf(cov_)
 return (w_ @ cov_ @ w_).item()

To this end, the algorithm uses bisectional search to allocate the variance of a cluster to its
elements based on their relative riskiness:

def get_hrp_allocation(cov, tickers):
 """Compute top-down HRP weights"""

 weights = pd.Series(1, index=tickers)
 clusters = [tickers] # initialize one cluster with all assets

 while len(clusters) > 0:
 # run bisectional search:
 clusters = [c[start:stop] for c in clusters

Unsupervised Learning Chapter 12

[388]

 for start, stop in ((0, int(len(c) / 2)),
 (int(len(c) / 2), len(c)))
 if len(c) > 1]
 for i in range(0, len(clusters), 2): # parse in pairs
 cluster0 = clusters[i]
 cluster1 = clusters[i + 1]

 cluster0_var = get_cluster_var(cov, cluster0)
 cluster1_var = get_cluster_var(cov, cluster1)

 weight_scaler = 1 - cluster0_var / (cluster0_var +
cluster1_var)
 weights[cluster0] *= weight_scaler
 weights[cluster1] *= 1 - weight_scaler
 return weights

The resulting portfolio allocation produces weights that sum to 1 and reflect the structure
present in the correlation matrix (see notebook for details).

Summary
In this chapter, we explored unsupervised learning methods that allow us to extract
valuable signal from our data, without relying on the help of outcome information
provided by labels.

We saw how we can use linear dimensionality reduction methods, such as PCA and ICA, to
extract uncorrelated or independent components from the data that can serve as risk factors
or portfolio weights. We also covered advanced non-linear manifold learning techniques
that produce state-of-the-art visualizations of complex alternative datasets.

In the second part, we covered several clustering methods that produce data-driven
groupings under various assumptions. These groupings can be useful, for example, to
construct portfolios that apply risk-parity principles to assets that have been clustered
hierarchically.

In the next three chapters, we will learn about various ML techniques for a key source of
alternative data, namely, natural language processing for text documents.

13
Working with Text Data

This is the first of three chapters dedicated to extracting signals for algorithmic trading
strategies from text data using natural language processing (NLP) and machine learning
(ML).

Text data is very rich in content, yet unstructured in format, and hence requires more
preprocessing so that an ML algorithm can extract the potential signal. The key challenge
lies in converting text into a numerical format for use by an algorithm, while
simultaneously expressing the semantics or meaning of the content. We will cover several
techniques that capture nuances of language that are readily understandable to humans so
that they can become an input for ML algorithms.

In this chapter, we introduce fundamental feature extraction techniques that focus on
individual semantic units; that is, words or short groups of words called tokens. We will
show how to represent documents as vectors of token counts by creating a document-term
matrix that, in turn, serves as input for text classification and sentiment analysis. We will
also introduce the Naive Bayes algorithm, which is popular for this purpose.

In the following two chapters, we build on these techniques and use ML algorithms such as
topic modeling and word-vector embedding to capture information contained in a broader
context.

In particular, in this chapter, we will cover the following:

What the fundamental NLP workflow looks like
How to build a multilingual feature extraction pipeline using spaCy and
TextBlob

How to perform NLP tasks such as part-of-speech (POS) tagging or named
entity recognition
How to convert tokens to numbers using the document-term matrix
How to classify text using the Naive Bayes model
How to perform sentiment analysis

Working with Text Data Chapter 13

[390]

The code samples for the following sections are in the GitHub repository
for this chapter, and references are listed in the main README file.

How to extract features from text data
Text data can be extremely valuable given how much information humans communicate
and store using natural language—the diverse set of data sources relevant to investment
range from formal documents such as company statements, contracts, and patents, to news,
opinion, and analyst research, and even to commentary and various types of social media
posts and messages.

Numerous and diverse text data samples are available online to explore the use of NLP
algorithms, many of which are listed among the references for this chapter.

To guide our journey through the techniques and Python libraries that most effectively
support the realization of this goal, we will highlight NLP challenges, introduce critical
elements of the NLP workflow, and illustrate applications of ML from text data to
algorithmic trading.

Challenges of NLP
The conversion of unstructured text into a machine-readable format requires careful
preprocessing to preserve valuable semantic aspects of the data. How humans derive
meaning from, and comprehend the content of language, is not fully understood and
improving language understanding by machines remains an area of very active research.

NLP is challenging because the effective use of text data for ML requires an understanding
of the inner workings of language as well as knowledge about the world to which it refers.
Key challenges include the following:

Ambiguity due to polysemy; that is, a word or phrase can have different
meanings depending on context (local high-school dropouts cut in half could be
taken a couple of ways, for instance).
Non-standard and evolving use of language, especially in social media.

Working with Text Data Chapter 13

[391]

The use of idioms, such as throw in the towel.
Tricky entity names, Where is A Bug's Life playing?
Knowledge of the world—Mary and Sue are sisters versus Mary and Sue are
mothers.

The NLP workflow
A key goal in using ML from text data for algorithmic trading is to extract signals from
documents. A document is an individual sample from a relevant text data source, such as a
company report, a headline or news article, or a tweet. A corpus, in turn, is a collection of
documents (plural: corpora).

The following diagram lays out the key steps to convert documents into a dataset that can
be used to train a supervised ML algorithm capable of making actionable predictions:

Fundamental techniques extract text features semantic units called tokens, and use
linguistic rules and dictionaries to enrich these tokens with linguistic and semantic
annotations. The bag-of-words (BoW) model uses token frequency to model documents as
token vectors, which leads to the document-term matrix that is frequently used for text
classification.

Advanced approaches use ML to refine features extracted by these fundamental techniques
and produce more informative document models. These include topic models that reflect
the joint usage of tokens across documents and word-vector models that capture the
context of token usage.

We will review key decisions made at each step and related trade-offs in more detail before
illustrating their implementation using the spaCy library in the next section. The following
table summarizes the key tasks of an NLP pipeline:

Feature Description
Tokenization Segments text into words, punctuation marks, and so on.
POS tagging Assigns word types to tokens, such as a verb or noun.

Dependency parsing Labels syntactic token dependencies, such as subject <=>
object.

Working with Text Data Chapter 13

[392]

Stemming and lemmatization Assigns the base forms of words: was => be, rats => rat.
Sentence boundary detection Finds and segments individual sentences.

Named entity recognition Labels real-world objects, such as people, companies, and
locations.

Similarity Evaluates the similarity of words, text spans, and
documents.

Parsing and tokenizing text data
A token is an instance of a characters that appears in a given document and should be
considered a semantic unit for further processing. The vocabulary is a set of tokens
contained in a corpus deemed relevant for further processing. A key trade-off in the
following decisions is the accurate reflection of the text source at the expense of a larger
vocabulary that may translate into more features and higher model complexity.

Basic choices in this regard concern the treatment of punctuation and capitalization, the use
of spelling correction, and whether to exclude very frequent so-called stop words (such as
and or the) as meaningless noise.

An additional decision is about the inclusion of groups of n individual tokens called n-
grams as semantic units (an individual token is also called a unigram). An example of a 2-
gram (or bi-gram) is New York, whereas New York City is a 3-gram (or tri-gram).

The goal is to create tokens that more accurately reflect the document's meaning. The
decision can rely on dictionaries or a comparison of the relative frequencies of the
individual and joint usage. Including n-grams will increase the number of features because
the number of unique n-grams tends to be much higher than the number of unique
unigrams and will likely add noise unless filtered for significance by frequency.

Linguistic annotation
Linguistic annotations include the application of syntactic and grammatical rules to
identify the boundary of a sentence despite ambiguous punctuation, and a token's role in a
sentence for POS tagging and dependency parsing. It also permits the identification of
common root forms for stemming and lemmatization to group related words:

POS annotations: It helps disambiguate tokens based on their function (this may
be necessary when a verb and noun have the same form), which increases the
vocabulary but may result in better accuracy.

Working with Text Data Chapter 13

[393]

Dependency parsing: It identifies hierarchical relationships among tokens, is
commonly used for translation, and is important for interactive applications that
require more advanced language understanding, such as chatbots.
Stemming: It uses simple rules to remove common endings, such as s, ly, ing, and
ed, from a token and reduce it to its stem or root form.
Lemmatization: It uses more sophisticated rules to derive the canonical root
(lemma) of a word. It can detect irregular roots, such as better and best, and more
effectively condenses vocabulary, but is slower than stemming. Both approaches
simplify vocabulary at the expense of semantic nuances.

Semantic annotation
Named entity recognition (NER) aims to identify tokens that represent objects of interest,
such as people, countries, or companies. It can be further developed into a knowledge
graph that captures semantic and hierarchical relationships among such entities. It is a
critical ingredient for applications that, for example, aim to predict the impact of news
events or sentiment.

Labeling
Many NLP applications learn to predict outcomes from meaningful information extracted
from text. Supervised learning requires labels to teach the algorithm the true input-output
relationship. With text data, establishing this relationship may be challenging and may
require explicit data modeling and collection.

Data modeling decisions include how to quantify sentiments implicit in a text document
like an email, a transcribed interview, or a tweet, or which aspects of a research document
or news report to assign to a specific outcome.

Use cases
The use of ML with text data for algorithmic trading relies on the extraction of meaningful
information in the form of features that directly or indirectly predict future price
movements. Applications range from the exploitation of the short-term market impact of
news to the long-term fundamental analysis of the drivers of asset valuation. Examples
include the following:

The evaluation of product review sentiment to assess a company's competitive
position or industry trends

Working with Text Data Chapter 13

[394]

The detection of anomalies in credit contracts to predict the probability or impact
of a default
 The prediction of news impact in terms of direction, magnitude, and affected
entities

JP Morgan, for instance, developed a predictive model based on 250,000 analyst reports that
outperformed several benchmark indices and produced uncorrelated signals relative to
sentiment factors formed from consensus EPS and recommendation changes.

From text to tokens – the NLP pipeline
In this section, we will demonstrate how to construct an NLP pipeline using the open
source Python library, spaCy. The textacy library builds on spaCy and provides easy
access to spaCy attributes and additional functionality.

Refer to the nlp_pipeline_with_spaCy notebook for the following code samples,
installation instructions, and additional details.

NLP pipeline with spaCy and textacy
spaCy is a widely used Python library with a comprehensive feature set for fast text
processing in multiple languages. The usage of tokenization and annotation engines
requires the installation of language models. The features we will use in this chapter only
require small models; larger models also include word vectors that we will cover in
Chapter 15, Word Embeddings.

Once installed and linked, we can instantiate a spaCy language model and then call it on a
document. As a result, spaCy produces a doc object that tokenizes the text and processes it
according to configurable pipeline components that, by default, consist of a tagger, a parser,
and a named-entity recognizer:

nlp = spacy.load('en')
nlp.pipe_names
['tagger', 'parser', 'ner']

Let's illustrate the pipeline using a simple sentence:

sample_text = 'Apple is looking at buying U.K. startup for $1 billion'
doc = nlp(sample_text)

Working with Text Data Chapter 13

[395]

Parsing, tokenizing, and annotating a sentence
Parsed document content is iterable, and each element has numerous attributes produced
by the processing pipeline. The following sample illustrates how to access the following
attributes:

.text: Original word text

.lemma_: Word root

.pos_: Basic POS tag

.tag_: Detailed POS tag

.dep_: Syntactic relationship or dependency between tokens

.shape_: The shape of the word regarding capitalization, punctuation, or digits

.is alpha: Check whether the token is alphanumeric
 .is stop: Check whether the token is on a list of common words for the given
language

We iterate over each token and assign its attributes to a pd.DataFrame:

pd.DataFrame([[t.text, t.lemma_, t.pos_, t.tag_, t.dep_, t.shape_,
t.is_alpha, t.is_stop] for t in doc],
 columns=['text', 'lemma', 'pos', 'tag', 'dep', 'shape',
'is_alpha', 'is_stop'])

Which produces the following output:

text lemma pos tag dep shape is_alpha is_stop
Apple apple PROPN NNP nsubj Xxxxx TRUE FALSE
is be VERB VBZ aux xx TRUE TRUE
looking look VERB VBG ROOT xxxx TRUE FALSE
at at ADP IN prep xx TRUE TRUE
buying buy VERB VBG pcomp xxxx TRUE FALSE
U.K. u.k. PROPN NNP compound X.X. FALSE FALSE
startup startup NOUN NN dobj xxxx TRUE FALSE
for for ADP IN prep xxx TRUE TRUE
$ $ SYM $ quantmod $ FALSE FALSE
1 1 NUM CD compound d FALSE FALSE
billion billion NUM CD pobj xxxx TRUE FALSE

Working with Text Data Chapter 13

[396]

We can visualize syntactic dependency in a browser or notebook using the following:

displacy.render(doc, style='dep', options=options, jupyter=True)

The result is a dependency tree:

Dependency tree

We can get additional insights into the meaning of attributes using spacy.explain(), as
here:

spacy.explain("VBZ")
verb, 3rd person singular present

Batch-processing documents
We will now read a larger set of 2,225 BBC News articles (see GitHub for data source
details) that belong to five categories and are stored in individual text files. We need to do
the following:

Call the .glob() method of pathlib's Path object.1.
Iterate over the resulting list of paths.2.
Read all lines of the news article excluding the heading in the first line.3.
Append the cleaned result to a list:4.

files = Path('..', 'data', 'bbc').glob('**/*.txt')
bbc_articles = []
for i, file in enumerate(files):
 _, _, _, topic, file_name = file.parts
 with file.open(encoding='latin1') as f:
 lines = f.readlines()
 body = ' '.join([l.strip() for l in lines[1:]]).strip()
 bbc_articles.append(body)
len(bbc_articles)
2225

Working with Text Data Chapter 13

[397]

Sentence boundary detection
We will illustrate sentence detection by calling the NLP object on the first of the articles:

doc = nlp(bbc_articles[0])
type(doc)
spacy.tokens.doc.Doc

spaCy computes sentence boundaries from the syntactic parse tree so that punctuation and
capitalization play an important but not decisive role. As a result, boundaries will coincide
with clause boundaries, even for poorly punctuated text.

We can access parsed sentences using the .sents attribute:

sentences = [s for s in doc.sents]
sentences[:3]
[Voting is under way for the annual Bloggies which recognize the best web
blogs - online spaces where people publish their thoughts - of the year. ,
Nominations were announced on Sunday, but traffic to the official site was
so heavy that the website was temporarily closed because of too many
visitors.,
Weblogs have been nominated in 30 categories, from the top regional blog,
to the best-kept-secret blog.]

Named entity recognition
spaCy enables named entity recognition using the .ent_type_ attribute:

for t in sentences[0]:
 if t.ent_type_:
 print('{} | {} | {}'.format(t.text, t.ent_type_,
spacy.explain(t.ent_type_)))
annual | DATE | Absolute or relative dates or periods
the | DATE | Absolute or relative dates or periods
year | DATE | Absolute or relative dates or periods

textacy facilitates access to the named entities that appear in the first article:

from textacy.extract import named_entities
entities = [e.text for e in named_entities(doc)]
pd.Series(entities).value_counts()
year 4
US 2
South-East Asia Earthquake 2
annual 2
Tsunami Blog 2

Working with Text Data Chapter 13

[398]

N-grams
N-grams combine N consecutive tokens. N-grams can be useful for the BoW model
because, depending on the textual context, treating something such as data scientist as a
single token may be more meaningful than treating it as two distinct tokens: data and
scientist.

textacy makes it easy to view the ngrams of a given length n occurring with at least
min_freq times:

from textacy.extract import ngrams
pd.Series([n.text for n in ngrams(doc, n=2, min_freq=2)]).value_counts()
East Asia 2
Asia Earthquake 2
Tsunami Blog 2
annual Bloggies 2

spaCy's streaming API
To pass a larger number of documents through the processing pipeline, we can use spaCy's
streaming API as follows:

iter_texts = (bbc_articles[i] for i in range(len(bbc_articles)))
for i, doc in enumerate(nlp.pipe(iter_texts, batch_size=50, n_threads=8)):
 assert doc.is_parsed

Multi-language NLP
spaCy includes trained language models for English, German, Spanish, Portuguese, French,
Italian, and Dutch, as well as a multi-language model for NER. Cross-language usage is
straightforward since the API does not change.

We will illustrate the Spanish language model using a parallel corpus of TED Talk subtitles
(see the GitHub repo for data source references). For this purpose, we instantiate both
language models:

model = {}
for language in ['en', 'es']:
 model[language] = spacy.load(language)

Working with Text Data Chapter 13

[399]

We then read small corresponding text samples in each model:

text = {}
path = Path('../data/TED')
for language in ['en', 'es']:
 file_name = path / 'TED2013_sample.{}'.format(language)
 text[language] = file_name.read_text()

Sentence boundary detection uses the same logic but finds a different breakdown:

parsed, sentences = {}, {}
for language in ['en', 'es']:
 parsed[language] = model[language](text[language])
 sentences[language] = list(parsed[language].sents)
print('Sentences:', language, len(sentences[language]))
Sentences: en 19
Sentences: es 22

POS tagging also works in the same way:

pos = {}
for language in ['en', 'es']:
 pos[language] = pd.DataFrame([[t.text, t.pos_, spacy.explain(t.pos_)]
for t in sentences[language][0]],
 columns=['Token', 'POS Tag', 'Meaning'])
pd.concat([pos['en'], pos['es']], axis=1).head()

The result is the side-by-side token annotations for the English and Spanish documents:

Token POS Tag Meaning Token POS Tag Meaning
There ADV adverb Existe VERB verb
s VERB verb una DET determiner
a DET determiner estrecha ADJ adjective
tight ADJ adjective y CONJ conjunction
and CCONJ coordinating conjunction sorprendente ADJ adjective

The next section illustrates how to use parsed and annotated tokens to build a document-
term matrix that can be used for text classification.

Working with Text Data Chapter 13

[400]

NLP with TextBlob
TextBlob is a Python library that provides a simple API for common NLP tasks and builds
on the Natural Language Toolkit (NLTK) and the Pattern web mining libraries. TextBlob
facilitates POS tagging, noun phrase extraction, sentiment analysis, classification,
translation, and more.

To illustrate the use of TextBlob, we sample a BBC sports article with the headline
Robinson ready for difficult task. Similarly to spaCy and other libraries, the first step is to pass
the document through a pipeline represented by the TextBlob object to assign annotations
required for various tasks (see the nlp_with_textblob notebook for this section):

from textblob import TextBlob
article = docs.sample(1).squeeze()
parsed_body = TextBlob(article.body)

Stemming
To perform stemming, we instantiate SnowballStemmer from the nltk library, call its
.stem() method on each token and display modified tokens:

from nltk.stem.snowball import SnowballStemmer
stemmer = SnowballStemmer('english')
[(word, stemmer.stem(word)) for i, word in enumerate(parsed_body.words)
 if word.lower() != stemmer.stem(parsed_body.words[i])]
[('Andy', 'andi'),
('faces', 'face'),
('tenure', 'tenur'),
('tries', 'tri'),
('winning', 'win'),

Working with Text Data Chapter 13

[401]

Sentiment polarity and subjectivity
TextBlob provides polarity and subjectivity estimates for parsed documents using
dictionaries provided by the Pattern library. These dictionaries map adjectives frequently
found in product reviews to sentiment polarity scores, ranging from -1 to +1 (negative ↔
positive) and a similar subjectivity score (objective ↔ subjective).

The .sentiment attribute provides the average for each over the relevant tokens, whereas
the .sentiment_assessments attribute lists the underlying values for each token (see
notebook):

parsed_body.sentiment
Sentiment(polarity=0.088031914893617, subjectivity=0.46456433637284694)

From tokens to numbers – the document-
term matrix
In this section, we first introduce how the BoW model converts text data into a numeric
vector space representation that permits the comparison of documents using their distance.
We then proceed to illustrate how to create a document-term matrix using the sklearn
library.

The BoW model
The BoW model represents a document based on the frequency of the terms or tokens it
contains. Each document becomes a vector with one entry for each token in the vocabulary
that reflects the token's relevance to the document.

The document-term matrix is straightforward to compute given the vocabulary. However,
it is also a crude simplification because it abstracts from word order and grammatical
relationships. Nonetheless, it often achieves good results in text classification quickly and,
thus, is a very useful starting point.

Working with Text Data Chapter 13

[402]

The following diagram (the one on the right) illustrates how this document model converts
text data into a matrix with numerical entries, where each row corresponds to a document
and each column to a token in the vocabulary. The resulting matrix is usually both very
high-dimensional and sparse; that is, one that contains many zero entries because most
documents only contain a small fraction of the overall vocabulary:

Resultant matrix

There are several ways to weigh a token's vector entry to capture its relevance to the
document. We will illustrate how to use sklearn to use binary flags, which indicate
presence or absence, counts, and weighted counts that account for differences in term
frequencies across all documents; that is, in the corpus.

Measuring the similarity of documents
The representation of documents as word vectors assigns to each document a location in
the vector space created by the vocabulary. Interpreting vector entries as Cartesian
coordinates in this space, we can use the angle between two vectors to measure their
similarity because vectors that point in the same direction contain the same terms with the
same frequency weights.

The preceding diagram (the one on the right) illustrates—simplified in two
dimensions—the calculation of the distance between a document represented by a vector d1

and a query vector (either a set of search terms or another document) represented by the
vector q.

Working with Text Data Chapter 13

[403]

Cosine similarity equals the cosine of the angle between the two vectors. It translates the
size of the angle into a number in the range [0, 1] since all vector entries are non-negative
token weights. A value of 1 implies that both documents are identical concerning their
token weighs, whereas a value of 0 implies that two documents only contain distinct
tokens.

As shown in the diagram, the cosine of the angle is equal to the dot product of the vectors;
that is, the sum product of their coordinates, divided by the product of the lengths,
measured by the Euclidean norms of each vector.

Document-term matrix with sklearn
The scikit-learn preprocessing module offers two tools to create a document-term
matrix. CountVectorizer uses binary or absolute counts to measure the term
frequency tf(d, t) for each document d and token t.

TfidFVectorizer, in contrast, weighs the (absolute) term frequency by the inverse
document frequency (idf). As a result, a term that appears in more documents will receive
a lower weight than a token with the same frequency for a given document but lower
frequency across all documents. More specifically, using the default settings, tf-idf(d, t)
entries for the document-term matrix are computed as tf-idf(d, t) = tf(d, t) x idf(t):

Here nd is the number of documents and df(d, t) the document frequency of term t. The
resulting tf-idf vectors for each document are normalized with respect to their absolute or
squared totals (see the sklearn documentation for details). The tf-idf measure was
originally used in information retrieval to rank search engine results and has subsequently
proven useful for text classification or clustering.

Both tools use the same interface and perform tokenization and further optional
preprocessing of a list of documents before vectorizing the text by generating token counts
to populate the document-term matrix.

Working with Text Data Chapter 13

[404]

Key parameters that affect the size of the vocabulary include the following:

stop_words: Use a built-in or provide a list of (frequent) words to exclude
ngram_range: Include n-grams in a range for n defined by a tuple of (nmin, nmax)
lowercase: Convert characters accordingly (default is True)
min_df / max_df: Ignore words that appear in less / more (int) or a
smaller/larger share of documents (if float [0.0,1.0])
max_features: Limit the number of tokens in a vocabulary accordingly
binary: Set non-zero counts to 1 True

See the document_term_matrix notebook for the following code samples and additional
details. We are again using the 2,225 BBC News articles for illustration.

Using CountVectorizer
The notebook contains an interactive visualization that explores the impact of the min_df
and max_df settings on the size of the vocabulary. We read the articles into a DataFrame,
set the CountVectorizer to produce binary flags and use all tokens, and call its
.fit_transform() method to produce a document-term matrix:

binary_vectorizer = CountVectorizer(max_df=1.0,
 min_df=1,
 binary=True)

binary_dtm = binary_vectorizer.fit_transform(docs.body)
<2225x29275 sparse matrix of type '<class 'numpy.int64'>'
 with 445870 stored elements in Compressed Sparse Row format>

The output is a scipy.sparse matrix in row format that efficiently stores of the small
share (<0.7%) of 445870 non-zero entries in the 2225 (document) rows and 29275 (token)
columns.

Visualizing vocabulary distribution
The visualization shows that requiring tokens to appear in at least 1% and fewer than 50%
of documents restricts the vocabulary to around 10% of the almost 30,000 tokens.

Working with Text Data Chapter 13

[405]

This leaves a mode of slightly over 100 unique tokens per document (left panel), and the
right panel shows the document frequency histogram for the remaining tokens:

Documents/Term frequency distribution

Finding the most similar documents
The CountVectorizer result lets us find the most similar documents using the pdist()
function for pairwise distances provided by the scipy.spatial.distance module. It
returns a condensed distance matrix with entries corresponding to the upper triangle of a
square matrix. We use np.triu_indices() to translate the index that minimizes the
distance to the row and column indices that in turn correspond to the closest token vectors:

m = binary_dtm.todense() # pdist does not accept sparse format
pairwise_distances = pdist(m, metric='cosine')
closest = np.argmin(pairwise_distances) # index that minimizes distance
rows, cols = np.triu_indices(n_docs) # get row-col indices
rows[closest], cols[closest]
(11, 75)

Working with Text Data Chapter 13

[406]

Articles number 11 and 75 are closest by cosine similarity because they share 58 tokens (see
notebook):

Topic tech tech
Heading Software watching while you work BT program to beat dialer scams

Body

Software that can not only monitor every
keystroke and action performed at a PC
but can also be used as legally binding
evidence of wrong-doing has been
unveiled. Worries about cyber-crime and
sabotage have prompted many
employers to consider monitoring
employees.

BT is introducing two initiatives to
help beat rogue dialer scams, which
can cost dial-up net users thousands.
From May, dial-up net users will be
able to download free software to stop
computers using numbers not on a
user's pre-approved list.

Both CountVectorizer and TfidFVectorizer can be used with spaCy; for example, to
perform lemmatization and exclude certain characters during tokenization, we use the
following:

nlp = spacy.load('en')
def tokenizer(doc):
 return [w.lemma_ for w in nlp(doc)
 if not w.is_punct | w.is_space]
vectorizer = CountVectorizer(tokenizer=tokenizer, binary=True)
doc_term_matrix = vectorizer.fit_transform(docs.body)

See the notebook for additional details and more examples.

TfidFTransformer and TfidFVectorizer
TfidfTransfomer computes tf-idf weights from a document-term matrix of token counts,
such as the one produced by the CountVectorizer.

TfidfVectorizer performs both computations in a single step. It adds a few parameters
to the CountVectorizer API that controls smoothing behavior.

TFIDF computation works as follows for a small text sample:

sample_docs = ['call you tomorrow',
 'Call me a taxi',
 'please call me... PLEASE!']

Working with Text Data Chapter 13

[407]

We compute the term frequency as we just did:

vectorizer = CountVectorizer()
tf_dtm = vectorizer.fit_transform(sample_docs).todense()
tokens = vectorizer.get_feature_names()
term_frequency = pd.DataFrame(data=tf_dtm,
 columns=tokens)

 call me please taxi tomorrow you
0 1 0 0 0 1 1
1 1 1 0 1 0 0
2 1 1 2 0 0 0

Document frequency is the number of documents containing the token:

vectorizer = CountVectorizer(binary=True)
df_dtm = vectorizer.fit_transform(sample_docs).todense().sum(axis=0)
document_frequency = pd.DataFrame(data=df_dtm,
 columns=tokens)
 call me please taxi tomorrow you
0 3 2 1 1 1 1

The tf-idf weights are the ratio of these values:

tfidf = pd.DataFrame(data=tf_dtm/df_dtm, columns=tokens)
 call me please taxi tomorrow you
0 0.33 0.00 0.00 0.00 1.00 1.00
1 0.33 0.50 0.00 1.00 0.00 0.00
2 0.33 0.50 2.00 0.00 0.00 0.00

The effect of smoothing
To avoid zero division, TfidfVectorizer uses smoothing for document and term
frequencies:

smooth_idf: Add 1 to document frequency, as if an extra document contained
every token in the vocabulary, to prevent zero divisions
sublinear_tf: Apply sublinear tf scaling; in other words, replace tf with 1 +
log(tf)

Working with Text Data Chapter 13

[408]

In combination with normed weights, the results differ slightly:

vect = TfidfVectorizer(smooth_idf=True,
 norm='l2', # squared weights sum to 1 by
 document
 sublinear_tf=False, # if True, use 1+log(tf)
 binary=False)
pd.DataFrame(vect.fit_transform(sample_docs).todense(),
 columns=vect.get_feature_names())

 call me please taxi tomorrow you
0 0.39 0.00 0.00 0.00 0.65 0.65
1 0.43 0.55 0.00 0.72 0.00 0.00
2 0.27 0.34 0.90 0.00 0.00 0.00

How to summarize news articles using TfidFVectorizer
Due to their ability to assign meaningful token weights, TFIDF vectors are also used to
summarize text data. For instance, Reddit's autotldr function is based on a similar
algorithm. See the notebook for an example using the BBC articles.

Text Preprocessing - review
The large number of techniques to process natural language for its use in machine learning
models that we introduced in this section is necessary to address the complex nature of this
highly unstructured data source. The engineering of good language features is both
challenging and rewarding and is arguably the most important step in unlocking the
semantic value hidden in text data.

In practice, experience helps us select transformations that remove noise rather than the
signal, but it will likely remain necessary to cross-validate and compare the performance of
different combinations of preprocessing choices.

Text classification and sentiment analysis
Once text data has been converted into numerical features using the NLP techniques
discussed in the previous sections, text classification works just like any other classification
task.

In this section, we will apply these preprocessing technique to news articles, product
reviews, and Twitter data and teach you about various classifiers to predict discrete news
categories, review scores, and sentiment polarity.

Working with Text Data Chapter 13

[409]

First, we will introduce the Naive Bayes model, a probabilistic classification algorithm that
works well with the text features produced by a bag-of-words model.

The code samples for this section are in the text_classification
notebook.

The Naive Bayes classifier
The Naive Bayes algorithm is very popular for text classification because low
computational cost and memory requirements facilitate training on very large, high-
dimensional datasets. Its predictive performance can compete with more complex models,
provides a good baseline, and is best known for successful spam detection.

The model relies on Bayes' theorem (see Chapter 9, Bayesian Machine Learning) and the
assumption that the various features are independent of each other given the outcome
class. In other words, for a given outcome, knowing the value of one feature (such as the
presence of a token in a document) does not provide any information about the value of
another feature.

Bayes' theorem refresher
Bayes' theorem expresses the conditional probability of one event (for instance, that an
email is spam as opposed to benign ham) given another event (for example, that the email
contains certain words), as follows:

The posterior probability that an email is in fact spam, given it contains certain words,
depends on the interplay of three factors:

The prior probability that an email is spam
The likelihood of encountering these word in a spam email
The evidence; that is, the probability of seeing these words in an email

Working with Text Data Chapter 13

[410]

To compute the posterior, we can ignore the evidence because it is the same for all
outcomes (spam versus ham), and the unconditional prior may be easy to compute.

However, the likelihood poses insurmountable challenges for a reasonably sized
vocabulary and a real-world corpus of emails. The reason is the combinatorial explosion of
words that did or did not appear jointly in different documents and that prevent the
evaluation required to compute a probability table and assign a value to the likelihood.

The conditional independence assumption
The assumption that is making the model both tractable and justifiably calling it Naive is
that the features are independent conditional on the outcome. To illustrate, let's classify an
email with the three words Send money now so that Bayes' theorem becomes the following:

Formally, the assumption that the three words are conditionally independent means that
the probability of observing send is not affected by the presence of the other terms given the
mail is spam; in other words, P(send | money, now, spam) = P(send | spam). As a result, we
can simplify the likelihood function:

Using the naive conditional independence assumption, each term in the numerator is
straightforward to compute as relative frequencies from the training data. The denominator
is constant across classes and can be ignored when posterior probabilities need to be
compared rather than calibrated. The prior probability becomes less relevant as the number
of factors—that is, features—increases.

In summary, the advantages of the Naive Bayes model are fast training and prediction
because the number of parameters is linear in the number of features, and their estimation
has a closed-form solution (based on training data frequencies) rather than expensive
iterative optimization. It is also intuitive and somewhat interpretable, does not require
hyperparameter tuning, and is relatively robust to irrelevant features given a sufficient
signal.

Working with Text Data Chapter 13

[411]

However, when the independence assumption does not hold, and text classification
depends on combinations of features or features are correlated, the model will perform
poorly.

News article classification
We start with an illustration of the Naive Bayes model for news article classification using
the BBC articles that we read as before to obtain a DataFrame with 2,225 articles from five
categories:

RangeIndex: 2225 entries, 0 to 2224
Data columns (total 3 columns):
topic 2225 non-null object
heading 2225 non-null object
body 2225 non-null object

Training and evaluating multinomial Naive Bayes
classifier
We split the data into the default 75:25 train-test sets, ensuring that test set classes closely
mirror the train set:

y = pd.factorize(docs.topic)[0] # create integer class values
X = docs.body
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1,
stratify=y)

We proceed to learn the vocabulary from the training set and transform both datasets
using CountVectorizer with default settings to obtain almost 26,000 features:

vectorizer = CountVectorizer()
X_train_dtm = vectorizer.fit_transform(X_train)
X_test_dtm = vectorizer.transform(X_test)
X_train_dtm.shape, X_test_dtm.shape
((1668, 25919), (557, 25919))

Training and prediction follow the standard sklearn fit/predict interface:

nb = MultinomialNB()
nb.fit(X_train_dtm, y_train)
y_pred_class = nb.predict(X_test_dtm)

Working with Text Data Chapter 13

[412]

We evaluate multiclass predictions using accuracy and find that the default classifier
achieved almost 98%:

accuracy_score(y_test, y_pred_class)
0.97666068222621

Sentiment analysis
Sentiment analysis is one of the most popular uses of NLP and machine learning for trading
because positive or negative perspectives on assets or other price drivers are likely to
impact returns.

Generally, modeling approaches to sentiment analysis rely on dictionaries, such as the
TextBlob library, or models that are trained on outcomes for a specific domain. The latter
is preferable because it permits more targeted labeling; for instance, by tying text features to
subsequent price changes rather than indirect sentiment scores.

We will illustrate machine learning for sentiment analysis using a Twitter dataset with
binary polarity labels, and a large Yelp business review dataset with a five-point outcome
scale.

Twitter data
We use a dataset that contains 1.6 million training and 350 test tweets from 2009 with
algorithmically assigned binary positive and negative sentiment scores that are fairly
evenly split (see the relevant notebook for more detailed data exploration).

Multinomial Naive Bayes
We create a document-term matrix with 934 tokens as follows:

vectorizer = CountVectorizer(min_df=.001, max_df=.8, stop_words='english')
train_dtm = vectorizer.fit_transform(train.text)
<1566668x934 sparse matrix of type '<class 'numpy.int64'>'
 with 6332930 stored elements in Compressed Sparse Row format>

We then train the MultinomialNB classifier as before and predict the test set:

nb = MultinomialNB()
nb.fit(train_dtm, train.polarity)
predicted_polarity = nb.predict(test_dtm)

Working with Text Data Chapter 13

[413]

The result is over 77.5% accuracy:

accuracy_score(test.polarity, y_pred_class)
0.7768361581920904

Comparison with TextBlob sentiment scores
We also obtain TextBlob sentiment scores for tweets and note (see the following left-hand
diagram) that positive test tweets receive a significantly higher sentiment estimate. We then
use the MultinomialNB model and the .predict_proba() method to compute predicted
probabilities and compare both models using the respective Area Under the Curve (see the
following right-hand diagram):

TextBlob sentiment scores

The Naive Bayes model outperforms TextBlob in this case.

Business reviews – the Yelp dataset challenge
Finally, we apply sentiment analysis to the significantly larger Yelp business review dataset
with five outcome classes. The data consists of several files with information on the
business, the user, the review, and other aspects that Yelp provides to encourage data
science innovation.

Working with Text Data Chapter 13

[414]

We will use around six million reviews produced over the 2010-2018 period (see the
relevant notebook for details). The following diagrams show the number of reviews and the
average number of stars per year:

Graphs representing number of reviews and the average number of stars per year

In addition to the text features resulting from the review texts, we will also use other
information submitted with the review or about the user.

We will train various models on data through 2017 and use 2018 as the test set.

Benchmark accuracy
Using the most frequent number of stars (=5) to predict the test set, we achieve an accuracy
close to 52%:

test['predicted'] = train.stars.mode().iloc[0]
accuracy_score(test.stars, test.predicted)
0.5196950594793454

Multinomial Naive Bayes model
Next, we train a Naive Bayes classifier using a document-term matrix produced
by CountVectorizer with default settings:

nb = MultinomialNB()
nb.fit(train_dtm,train.stars)
predicted_stars = nb.predict(test_dtm)

Working with Text Data Chapter 13

[415]

The prediction produces 64.7% accuracy on the test set, a 24.4% improvement over the
benchmark:

accuracy_score(test.stars, predicted_stars)
0.6465164206691094

One-versus-all logistic regression
We proceed to train a one-versus-all logistic regression that trains one model per class,
while treating the remaining classes as the negative class, and predicts probabilities for each
class using the different models.

Using only text features, we train and evaluate the model as follows:

logreg = LogisticRegression(C=1e9)
logreg.fit(X=train_dtm, y=train.stars)
y_pred_class = logreg.predict(test_dtm)

The model achieves significantly higher accuracy at 73.6%:

accuracy_score(test.stars, y_pred_class)
0.7360498864740219

Combining text and numerical features
The dataset contains various numerical features (see the relevant notebook for
implementation details).

Vectorizers produce scipy.sparse matrices. To combine vectorized text data with other
features, we need to first convert these to sparse matrices as well; many sklearn objects and
other libraries, such as LightGBM, can handle these very memory-efficient data structures.
Converting the sparse matrix to a dense NumPy array risks memory overflow.

Most variables are categorical, so we use one-hot encoding since we have a fairly large
dataset to accommodate the increase in features.

We convert the encoded numerical features and combine them with the document-term
matrix:

train_numeric = sparse.csr_matrix(train_dummies.astype(np.int8))
train_dtm_numeric = sparse.hstack((train_dtm, train_numeric))

Working with Text Data Chapter 13

[416]

Multinomial logistic regression
Logistic regression also provides a multinomial training option that is faster and more
accurate than the one-versus-all implementation. We use the lbfgs solver (see the sklearn
documentation linked on GitHub for details):

multi_logreg = LogisticRegression(C=1e9, multi_class='multinomial',
 solver='lbfgs')
multi_logreg.fit(train_dtm_numeric.astype(float), train.stars)
y_pred_class = multi_logreg.predict(test_dtm_numeric.astype(float))

This model improves the performance to 74.6% accuracy:

accuracy_score(test.stars, y_pred_class)
0.7464488070176475

In this case, tuning the regularization parameter C did not lead to very significant
improvements (see the notebook).

Gradient-boosting machine
For illustration purposes, we also train a LightGBM gradient-boosting tree ensemble with
default settings and the multiclass objective:

param = {'objective':'multiclass', 'num_class': 5}
booster = lgb.train(params=param,
 train_set=lgb_train,
 num_boost_round=500,
 early_stopping_rounds=20,
 valid_sets=[lgb_train, lgb_test])

The basic settings do not improve on multinomial logistic regression, but further parameter
tuning remains an unused option:

y_pred_class = booster.predict(test_dtm_numeric.astype(float))
accuracy_score(test.stars, y_pred_class.argmax(1) + 1)
0.738665855696524

Working with Text Data Chapter 13

[417]

Summary
In this chapter, we explored numerous techniques and options to process unstructured data
with the goal of extracting semantically meaningful, numerical features for use in machine
learning models.

We covered the basic tokenization and annotation pipeline and illustrated its
implementation for multiple languages using spaCy and TextBlob. We built on these results
to create a document model based on the bag-of-words model to represent documents as
numerical vectors. We learned how to refine the preprocessing pipeline and then used
vectorized text data for classification and sentiment analysis.

In the remaining two chapters on alternative text data, we will learn how to summarize text
using unsupervised learning to identify latent topics (in the next chapter) and examine
techniques to represent words as vectors that reflect the context of word usage and have
been used very successfully to proceed richer text features for various classification tasks.

14
Topic Modeling

In the last chapter, we converted unstructured text data into a numerical format using the
bag-of-words model. This model abstracts from word order and represents documents as
word vectors, where each entry represents the relevance of a token to the document.

The resulting document-term matrix (DTM), (you may also come across the transposed
term-document matrix) is useful to compare documents to each other or to a query vector
based on their token content, and quickly find a needle in a haystack or classify documents
accordingly.

However, this document model is both high-dimensional and very sparse. As a result, it
does little to summarize the content or get closer to understanding what it is about. In this
chapter, we will use unsupervised machine learning in the form of topic modeling to
extract hidden themes from documents. These themes can produce detailed insights into a
large body of documents in an automated way. They are very useful to understand the
haystack itself and permit the concise tagging of documents because using the degree of
association of topics and documents.

Topic models permit the extraction of sophisticated, interpretable text features that can be
used in various ways to extract trading signals from large collections of documents. They
speed up the review of documents, help identify and cluster similar documents, and can be
annotated as a basis for predictive modeling. Applications include the identification of key
themes in company disclosures, or earnings call transcripts, customer reviews or contracts,
annotated using, for example, sentiment analysis or direct labeling with subsequent asset
returns.

More specifically, in this chapter, we will cover these topics:

What topic modeling achieves, why it matters, and how it has evolved
How Latent Semantic Indexing (LSI) reduces the dimensionality of the DTM
How probabilistic Latent Semantic Analysis (pLSA) uses a generative model to
extract topics

Topic Modeling Chapter 14

[419]

How Latent Dirichlet Allocation (LDA) refines pLSA and why it is the most
popular topic model
How to visualize and evaluate topic modeling results
How to implement LDA using sklearn and gensim
How to apply topic modeling to collections of earnings calls and Yelp business
reviews

The code samples for the following sections are in the directory of the
GitHub repository for this chapter, and references are listed in the main
README file.

Learning latent topics: goals and
approaches
Topic modeling aims to discover hidden topics or themes across documents that capture
semantic information beyond individual words. It aims to address a key challenge in
building a machine learning algorithm that learns from text data by going beyond the
lexical level of what has been written to the semantic level of what was intended. The
resulting topics can be used to annotate documents based on their association with various
topics.

In other words, topic modeling aims to automatically summarize large collections of
documents to facilitate organization and management, as well as search and
recommendations. At the same time, it can enable the understanding of documents to the
extent that humans can interpret the descriptions of topics.

Topic models aim to address the curse of dimensionality that can plague the bag-of-words
model. The document representation based on high-dimensional sparse vectors can make
similarity measures noisy, leading to inaccurate distance measurement and overfitting of
text classification models.

Moreover, the bag of words model ignores word order and loses context as well as
semantic information because it is not able to capture synonymy (several words have the
same meaning) and polysemy (one word has several meanings). As a result, document
retrieval or similarity search may miss the point when the documents are not indexed by
the terms used to search or compare.

These shortcoming prompt this question: how do we model and learn meaning topics that
facilitate a more productive interaction with text data?

Topic Modeling Chapter 14

[420]

From linear algebra to hierarchical probabilistic
models
Initial attempts by topic models to improve on the vector space model (developed in the
mid-1970s) applied linear algebra to reduce the dimensionality of the document-term
matrix. This approach is similar to the algorithm we discussed as principal component
analysis in Chapter 12, Unsupervised Learning, on unsupervised learning. While effective, it
is difficult to evaluate the results of these models absent a benchmark model.

In response, probabilistic models emerged that assume an explicit document generation
process and provide algorithms to reverse engineer this process and recover the underlying
topics.

This table highlights key milestones in the model evolution that we will address in more
detail in the following sections:

Model Year Description
Latent Semantic Indexing
(LSI) 1988 Reduces the word space dimensionality to capture

semantic document-term relationships by
Probabilistic Latent
Semantic Analysis (pLSA) 1999 Reverse-engineers a process that assumes words

generate a topic and documents are a mix of topics
Latent Dirichlet Allocation
(LDA) 2003 Adds a generative process for documents: a three-level

hierarchical Bayesian model

Latent semantic indexing
Latent Semantic Indexing (LSI, also called Latent Semantic Analysis) sets out to improve
the results of queries that omitted relevant documents containing synonyms of query
terms. It aims to model the relationships between documents and terms to be able to
predict that a term should be associated with a document, even though, because of
variability in word use, no such association was observed.

LSI uses linear algebra to find a given number, k, of latent topics by decomposing the DTM.
More specifically, it uses Singular Value Decomposition (SVD) to find the best lower-rank
DTM approximation using k singular values and vectors. In other words, LSI is an
application of the unsupervised learning techniques of dimensionality reduction we
encountered in Chapter 12, Unsupervised Learning to the text representation that we
covered in Chapter 13, Working with Text Data. The authors experimented with hierarchical
clustering but found it too restrictive to explicitly model the document-topic and topic-term
relationships, or capture associations of documents or terms with several topics.

Topic Modeling Chapter 14

[421]

In this context, SVD serves the purpose of identifying a set of uncorrelated indexing
variables or factors that permit us to represent each term and document by its vector of
factor values.

The following figure illustrates how SVD decomposes the DTM into three matrices, two
containing orthogonal singular vectors and a diagonal matrix with singular values that
serve as scaling factors. Assuming some correlation in the original data, singular values
decay in value so that selecting only the largest T singular values produces a lower-
dimensional approximation of the original DTM that loses relatively little information.
Hence, in the reduced version the rows or columns that had N items only have T<N entries.

This reduced decomposition can be interpreted as illustrated next, where the first M x T
matrix represents the relationships between documents and topics, the diagonal matrix
scales the topics by their corpus strength, and the third matrix models the term-topic
relationship:

The rows of the matrix that results from the product of the first two
matrices, UTΣT, corresponds to the locations of the original documents projected into the
latent topic space.

Topic Modeling Chapter 14

[422]

How to implement LSI using sklearn
We will illustrate the application of LSI using the BBC article data that we introduced in the
last chapter because it is small enough to permit quick training and allow us to compare
topic assignments to category labels. See the latent_semantic_indexing notebook for
additional implementation details:

We begin by loading the documents and creating a train and (stratified) test set1.
with 50 articles.
Then, we vectorize the data using TfidfVectorizer to obtain weighted DTM2.
counts and filter out words that appear in less than 1% or more than 25% of the
documents, as well as generic stopwords, to obtain a vocabulary of around 2,900
words:

vectorizer = TfidfVectorizer(max_df=.25, min_df=.01,
stop_words='english',
binary=False)
train_dtm = vectorizer.fit_transform(train_docs.article)
test_dtm = vectorizer.transform(test_docs.article)

We use sklearn's TruncatedSVD class, which only computes the k largest3.
singular values to reduce the dimensionality of the document-term matrix. The
deterministic arpack algorithm delivers an exact solution, but the default
randomized implementation is more efficient for large matrices.
We compute five topics to match the five categories, which explain only 5.4% of4.
the total DTM variance so higher values would be reasonable:

svd = TruncatedSVD(n_components=5, n_iter=5, random_state=42)
svd.fit(train_dtm)
svd.explained_varianceratio
array([0.00187014, 0.01559661, 0.01389952, 0.01215842, 0.01066485])

LSI identifies a new orthogonal basis for the document-term matrix that reduces5.
the rank to the number of desired topics.
The .transform() method of the trained svd object projects the documents into6.
the new topic space that is the result of reducing the dimensionality of the
document vectors and corresponds to the UTΣT transformation illustrated before:

train_doc_topics = svd.transform(train_dtm)
train_doc_topics.shape
(2175, 5)

Topic Modeling Chapter 14

[423]

We can sample an article to view its location in the topic space. We draw a7.
Politics article that is most (positively) associated with topics 1 and 2:

i = randint(0, len(train_docs))
train_docs.iloc[i, :2].append(pd.Series(doc_topics[i],
index=topic_labels))
Category Politics
Heading What the election should really be about?
Topic 1 0.33
Topic 2 0.18
Topic 3 0.12
Topic 4 0.02
Topic 5 0.06

The topic assignments for this sample align with the average topic weights for8.
each category illustrated next (Politics is the leftmost). They illustrate how LSI
expresses the k topics as directions in a k-dimensional space (the notebook
includes a projection of the average topic assignments per category into two-
dimensional space).
Each category is clearly defined, and the test assignments match with train9.
assignments. However, the weights are both positive and negative, making it
more difficult to interpret the topics:

Topic Modeling Chapter 14

[424]

We can also display the words that are most closely associated with each topic (in10.
absolute terms). The topics appear to capture some semantic information but are
not differentiated:

Pros and cons
The benefits of LSI include the removal of noise and mitigation of the curse of
dimensionality, while also capturing some semantics and clustering both documents and
terms.

However, the results of LSI are difficult to interpret because topics are word vectors with
both positive and negative entries. There is also no underlying model that would permit the
evaluation of fit and provide guidance when selecting the number of dimensions or topics.

Probabilistic latent semantic analysis
Probabilistic Latent Semantic Analysis (pLSA) takes a statistical perspective on LSA and
creates a generative model to address the lack of theoretical underpinnings of LSA.

pLSA explicitly models the probability each co-occurrence of documents d and words w
described by the DTM as a mixture of conditionally independent multinomial distributions
that involve topics t.

Topic Modeling Chapter 14

[425]

The symmetric formulation of this generative process of word-document co-occurrences
assumes both words and documents are generated by the latent topic class, whereas the
asymmetric model assumes the topics are selected given the document, and words result
from a second step given the topic:

The number of topics is a hyperparameter chosen before training and is not learned from
the data.

Probabilistic models often use the following plate notation to express dependencies. The
following figure encodes the relationships just describe for the asymmetric model. Each
rectangle represents multiple items, such as M Documents for the outer and N Words for
each document for the inner block. We only observe the documents and their content, and
the model infers the hidden or latent topic distribution:

The benefit of using a probability model is that we can now compare models by evaluating
the probability they assign to new documents given the parameters learned during
training.

How to implement pLSA using sklearn
pLSA is equivalent to non-negative matrix factorization using a Kullback-Leibler
Divergence objective (see references on GitHub https:/ /github. com/ PacktPublishing/
Hands-On-Machine- Learning- for- Algorithmic- Trading). Hence, we can use the
sklearn.decomposition.NM class to implement this model, following the LSA example.

https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading

Topic Modeling Chapter 14

[426]

Using the same train-test split of the DTM produced by the TfidfVectorizer, we fit
pLSA as follows:

nmf = NMF(n_components=n_components,
random_state=42,
solver='mu',
beta_loss='kullback-leibler',
max_iter=1000)
nmf.fit(train_dtm)

We get a measure of the reconstruction error, which is a substitute for the explained
variance measure from before:

nmf.reconstruction_err_
316.2609400385988

Due to its probabilistic nature, pLSA produces only positive topic weights that result in
more straightforward topic-category relationships for the test and training sets:

Topic Modeling Chapter 14

[427]

We can also see that the word lists that describe each topic begin to make more sense; for
example, the Entertainment category is most directly associated with Topic 4, which
includes the words film, start, and so on:

Latent Dirichlet allocation
Latent Dirichlet allocation (LDA) extends pLSA by adding a generative process for topics.

It is the most popular topic model because it tends to produce meaningful topics that
humans can relate to, can assign topics to new documents, and is extensible. Variants of
LDA models can include metadata such as authors, or image data, or learn hierarchical
topics.

How LDA works
LDA is a hierarchical Bayesian model that assumes topics are probability distributions over
words, and documents are distributions over topics. More specifically, the model
assumes that topics follow a sparse Dirichlet distribution, which implies that documents
cover only a small set of topics, and topics use only a small set of words frequently.

Topic Modeling Chapter 14

[428]

The Dirichlet distribution
The Dirichlet distribution produces probability vectors that can be used with discrete
distributions. That is, it randomly generates a given number of values that are positive and
sum to one as expected for probabilities. It has a parameter of positive, real value that
controls the concentration of the probabilities. Values closer to zero mean that only a few
values will be positive and receive most probability mass. The following screenshot
illustrates three draws of size 10 for α = 0.1 (the
dirichlet_distribution notebook contains a simulation so you can experiment with
different parameter values):

Dirichlet allocation

The generative model
The Dirichlet distribution figures prominently in the LDA topic model, which assumes the
following generative process when an author adds an article to a body of documents:

Randomly mix a small subset of shared topics K according to the topic1.
probabilities
For each word, select one of the topics according to the document-topic2.
probabilities
Select a word from the topic's word list according to the topic-word probabilities3.

As a result, the article content depends on the weights of each topic and on the terms that
make up each topic. The Dirichlet distribution governs the selection of topics for documents
and words for topics and encodes the idea that a document only covers a few topics, while
each topic uses only a small number of words frequently.

Topic Modeling Chapter 14

[429]

The plate notation for the LDA model summarizes these relationships:

Reverse-engineering the process
The generative process is fictional but turns out to be useful because it permits the recovery
of the various distributions. The LDA algorithm reverse-engineers the work of the
imaginary author and arrives at a summary of the document-topic-word relationships that
concisely describes the following:

The percentage contribution of each topic to a document
The probabilistic association of each word with a topic

LDA solves the Bayesian inference problem of recovering the distributions from the body
of documents and the words they contain by reverse-engineering the assumed content
generation process. The original paper uses variational Bayes (VB) to approximate the
posterior distribution. Alternatives include Gibbs sampling and expectation propagation.
Later, we will illustrate implementations using the sklearn and gensim libraries.

Topic Modeling Chapter 14

[430]

How to evaluate LDA topics
Unsupervised topic models do not provide a guarantee that the result will be meaningful or
interpretable, and there is no objective metric to assess the result as in supervised learning.
Human topic evaluation is considered the gold standard but is potentially expensive and
not readily available at scale.

Two options to evaluate results more objectively include perplexity, which evaluates the
model on unseen documents, and topic coherence metrics, which aim to evaluate the
semantic quality of the uncovered patterns.

Perplexity
Perplexity, when applied to LDA, measures how well the topic-word probability
distribution recovered by the model predicts a sample, for example, unseen text
documents. It is based on the entropy H(p) of this distribution p and computed with respect
to the set of tokens w:

Measures closer to zero imply the distribution is better at predicting the sample.

Topic coherence
Topic coherence measures the semantic consistency of the topic model results, that is,
whether humans would perceive the words and their probabilities associated with topics as
meaningful.

To this end, it scores each topic by measuring the degree of semantic similarity between the
words most relevant to the topic. More specifically, coherence measures are based on the
probability of observing the set of words W that define a topic together.

We use two measures of coherence that have been designed for LDA and shown to align
with human judgment of topic quality, namely the UMass and the UCI measures.

Topic Modeling Chapter 14

[431]

The UCI metric defines a word pair's score to be the sum of the Pointwise Mutual
Information (PMI) between two distinct pairs of (top) topic words wi, wj ∈ w and a
smoothing factor ε:

The probabilities are computed from word co-occurrence frequencies in a sliding window
over an external corpus such as Wikipedia, so that this metric can be thought of as an
external comparison to a semantic ground truth.

In contrast, the UMass metric uses the co-occurrences in a number of documents D from the
training corpus to compute a coherence score:

Rather than a comparison to an extrinsic ground truth, this measure reflects intrinsic
coherence. Both measures have been evaluated to align well with human judgment. In both
cases, values closer to zero imply that a topic is more coherent.

How to implement LDA using sklearn
Using the BBC data as before, we use
sklearn.decomposition.LatentDirichletAllocation to train an LDA model with
five topics (see the sklearn documentation for detail on parameters, and the notebook
lda_with_sklearn for implementation details):

lda = LatentDirichletAllocation(n_components=5,
 n_jobs=-1,
 max_iter=500,
 learning_method='batch',
 evaluate_every=5,
 verbose=1,
 random_state=42)
ldat.fit(train_dtm)
LatentDirichletAllocation(batch_size=128, doc_topic_prior=None,
 evaluate_every=5, learning_decay=0.7, learning_method='batch',
 learning_offset=10.0, max_doc_update_iter=100, max_iter=500,

Topic Modeling Chapter 14

[432]

 mean_change_tol=0.001, n_components=5, n_jobs=-1,
 n_topics=None, perp_tol=0.1, random_state=42,
 topic_word_prior=None, total_samples=1000000.0, verbose=1)

The model tracks the in-sample perplexity during training and stops iterating once this
measure stops improving. We can persist and load the result as usual with sklearn objects:

joblib.dump(lda, model_path / 'lda.pkl')
lda = joblib.load(model_path / 'lda.pkl')

How to visualize LDA results using pyLDAvis
Topic visualization facilitates the evaluation of topic quality using human judgment.
pyLDAvis is a Python port of LDAvis, developed in R and D3.js. We will introduce the
key concepts; each LDA implementation notebook contains examples.

pyLDAvis displays the global relationships between topics while also facilitating their
semantic evaluation by inspecting the terms most closely associated with each topic and,
inversely, the topics associated with each term. It also addresses the challenge that terms
that are frequent in a corpus tend to dominate the multinomial distribution over words that
define a topic. LDAVis introduces the relevance r of the term w to topic t, to produce a
flexible ranking of key terms using a weight parameter 0<=ƛ<=1.

With as the model's probability estimate of observing the term w for topic t, and as the
marginal probability of w in the corpus:

Topic Modeling Chapter 14

[433]

The first term measures the degree of association of term t with topic w, and the second
term measures the lift or saliency, that is, how much more likely the term is for the topic
than in the corpus.

Topic 14

The tool allows the user to interactively change ƛ to adjust the relevance, which updates the
ranking of terms. User studies have found that ƛ=0.6 produces the most plausible results.

How to implement LDA using gensim
gensim is a specialized NLP library with a fast LDA implementation and many additional
features. We will also use it in the next chapter on word vectors (see the
latent_dirichlet_allocation_gensim notebook for details).

Topic Modeling Chapter 14

[434]

It facilitates the conversion of DTM produced by sklearn into gensim data structures as
follows:

train_corpus = Sparse2Corpus(train_dtm, documents_columns=False)
test_corpus = Sparse2Corpus(test_dtm, documents_columns=False)
id2word = pd.Series(vectorizer.get_feature_names()).to_dict()

Gensim LDA algorithm includes numerous settings, which are as follows:

LdaModel(corpus=None,
 num_topics=100,
 id2word=None,
 distributed=False,
 chunksize=2000, # No of doc per training chunk.
 passes=1, # No of passes through corpus during training
 update_every=1, # No of docs to be iterated through per update
 alpha='symmetric',
 eta=None, # a-priori belief on word probability
 decay=0.5, # % of lambda forgotten when new doc is examined
 offset=1.0, # controls slow down of first few iterations.
 eval_every=10, # how often estimate log perplexity (costly)
 iterations=50, # Max. of iterations through the corpus
 gamma_threshold=0.001, # Min. change in gamma to continue
 minimum_probability=0.01, # Filter topics with lower
 probability
 random_state=None,
 ns_conf=None,
 minimum_phi_value=0.01, # lower bound on term probabilities
 per_word_topics=False, # Compute most word-topic
 probabilities
 callbacks=None,
 dtype=<class 'numpy.float32'>)

Gensim also provides an LdaMulticore model for parallel training that may speed up
training using Python's multiprocessing features for parallel computation.

Model training just requires instantiating the LdaModel object as follows:

lda = LdaModel(corpus=train_corpus,
num_topics=5,
id2word=id2word)

Topic Modeling Chapter 14

[435]

Topic coherence measures whether the words in a topic tend to co-occur together. It adds
up a score for each distinct pair of top-ranked words. The score is the log of the probability
that a document containing at least one instance of the higher-ranked word also contains at
least one instance of the lower-ranked word.

Large negative values indicate words that don't co-occur often; values closer to zero
indicate that words tend to co-occur more often. gensim permits topic coherence
evaluation that produces the topic coherence and shows the most important words per
topic:

coherence = lda_gensim.top_topics(corpus=train_corpus, coherence='u_mass')

We can display the results as follows:

topic_coherence = []
topic_words = pd.DataFrame()
for t in range(len(coherence)):
 label = topic_labels[t]
 topic_coherence.append(coherence[t][1])
 df = pd.DataFrame(coherence[t][0], columns=[(label, 'prob'), (label,
'term')])
 df[(label, 'prob')] = df[(label, 'prob')].apply(lambda x:
'{:.2%}'.format(x))
 topic_words = pd.concat([topic_words, df], axis=1)
topic_words.columns = pd.MultiIndex.from_tuples(topic_words.columns)
pd.set_option('expand_frame_repr', False)
print(topic_words.head())
pd.Series(topic_coherence, index=topic_labels).plot.bar();

This shows the following top words for each topic:

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5
Probability Term Probability Term Probability Term Probability Term Probability Term
0.55% online 0.90% best 1.04% mobile 0.64% market 0.94% labour
0.51% site 0.87% game 0.98% phone 0.53% growth 0.72% blair
0.46% game 0.62% play 0.51% music 0.52% sales 0.72% brown
0.45% net 0.61% won 0.48% film 0.49% economy 0.65% election
0.44% used 0.56% win 0.48% use 0.45% prices 0.57% united

And the corresponding coherence scores, which highlight the decay of topic quality (at least
in part due to the relatively small dataset):

Topic Modeling Chapter 14

[436]

Decay of topic quality

Topic modeling for earnings calls
In Chapter 3, Alternative Data for Finance, we learned how to scrape earnings call data from
the SeekingAlpha site. In this section, we will illustrate topic modeling using this source.
I'm using a sample of some 500 earnings call transcripts from the second half of 2018. For a
practical application, a larger dataset would be highly desirable. The
earnings_calls directory contains several files, with examples mentioned later.

See the lda_earnings_calls notebook for details on loading, exploring, and
preprocessing the data, as well as training and evaluating individual models, and the
run_experiments.py file for the experiments described here.

Topic Modeling Chapter 14

[437]

Data preprocessing
The transcripts consist of individual statements by a company representative, an operator,
and usually a question and answer session with analysts. We will treat each of these
statements as separate documents, ignoring operator statements, to obtain 22,766 items
with mean and median word counts of 144 and 64, respectively:

documents = []
for transcript in earnings_path.iterdir():
 content = pd.read_csv(transcript / 'content.csv')
 documents.extend(content.loc[(content.speaker!='Operator') &
(content.content.str.len() > 5), 'content'].tolist())
len(documents)
22766

We use spaCy to preprocess these documents as illustrated in Chapter 13, Working with
Text Data (see the notebook) and store the cleaned and lemmatized text as a new text file.

Data exploration reveals domain-specific stopwords such as year and quarter that we
remove in a second step, where we also filter out statements with fewer than ten words so
that some 16,150 remain.

Model training and evaluation
For illustration, we will create a document-term matrix containing terms appearing in
between 0.5% and 50% of documents for around 1,560 features. Training a 15-topic model
using 25 passes over the corpus takes a bit over two minutes on a four-core i7.

The top 10 words per topic identify several distinct themes that range from obvious
financial information to clinical trials (topic 4) and supply chain issues (12):

Topic Modeling Chapter 14

[438]

Using pyLDAvis' relevance metric with a 0.6 weighting of unconditional frequency relative
to lift, topic definitions become more intuitive, as illustrated for topic 14 about sales
performance:

 Sales performance for Topic 14

The notebook also illustrates how to look up documents by their topic association. In this
case, an analyst can review relevant statements for nuances, use sentiment analysis to
further process the topic-specific text data, or assign labels derived from market prices.

Running experiments
To illustrate the impact of different parameter settings, we ran a few hundred experiments
for different DTM constraints and model parameters. More specifically, we let the min_df
and max_df parameters range from 50-500 words and 10% to 100% of documents,
respectively using alternatively binary and absolute counts. We then trained LDA models
with 3 to 50 topics, using 1 and 25 passes over the corpus.

Topic Modeling Chapter 14

[439]

The following chart illustrates the results in terms of topic coherence (higher is better), and
perplexity (lower is better). Coherence drops after 25-30 topics and perplexity similarly
increases:

The notebook includes regression results that quantify the relationships between
parameters and outcomes. We generally get better results using absolute counts and a
smaller vocabulary.

Topic modeling for Yelp business reviews
The lda_yelp_reviews notebook contains an example of LDA applied to six million
business review on Yelp. Reviews are more uniform in length than the statements extracted
from the earnings call transcripts. After cleaning as before, the 10th and 90th percentiles
range from 14 to 90 tokens.

We show results for one model using a vocabulary of 3,800 tokens based on min_df=0.1%
and max_df=25% with a single pass to avoid a lengthy training time for 20 topics. We can
use the pyldavis topic_info attribute to compute relevance values for lambda=0.6 that
produce the following word list (see the notebook for details):

Topic Modeling Chapter 14

[440]

Gensim provides a LdaMultiCore implementation that allows for parallel training using
Python's multiprocessing module and improves performance by 50% when using four
workers. More workers do not further reduce training time though, due to I/O bottlenecks.

Summary
In this chapter, we explored the use of topic modeling to gain insights into the content of a
large collection of documents. We covered Latent Semantic Analysis, which uses
dimensionality reduction of the DTM to project documents into a latent topic space. While
effective in addressing the curse of dimensionality caused by high-dimensional word
vectors, it does not capture much semantic information. Probabilistic models make explicit
assumptions about the interplay of documents, topics, and words that allow algorithms to
reverse engineer the document generation process and evaluate the model fit on new
documents. We saw that LDA is capable of extracting plausible topics that allow us to gain
a high-level understanding of large amounts of text in an automated way, while also
identifying relevant documents in a targeted way.

In the next chapter, we will learn how to train neural networks that embed individual
words in a high-dimensional vector space that captures important semantic information
and allows us to use the resulting word vectors as high-quality text features.

15
Word Embeddings

In the two previous chapters, we applied the bag-of-words model to convert text data into a
numerical format. The results were sparse, fixed-length vectors that represent documents in
a high-dimensional word space. This allows evaluating the similarity of documents and
creates features to train a machine learning algorithm and classify a document's content or
rate the sentiment expressed in it. However, these vectors ignore the context in which a
term is used so that, for example, a different sentence containing the same words would be
encoded by the same vector.

In this chapter, we will introduce an alternative class of algorithms that use neural
networks to learn a vector representation of individual semantic units such as a word or a
paragraph. These vectors are dense rather than sparse, and have a few hundred real-valued
rather than tens of thousands of binary or discrete entries. They are called
embeddings because they assign each semantic unit a location in a continuous vector
space.

Embeddings result from training a model to relate tokens to their context with the benefit
that similar usage implies a similar vector. Moreover, we will see how the embeddings
encode semantic aspects, such as relationships among words by means of their relative
location. As a result, they are powerful features for use in the deep learning models that we
will introduce in the following chapters.

More specifically, in this chapter, we will cover the following topics:

What word embeddings are and how they work and capture semantic
information
How to use trained word vectors
Which network architectures are useful to train Word2vec models
How to train a Word2vec model using Keras, gensim, and TensorFlow
How to visualize and evaluate the quality of word vectors
How to train a Word2vec model using SEC filings
How Doc2vec extends Word2vec

Word Embeddings Chapter 15

[442]

How word embeddings encode semantics
The bag-of-words model represents documents as vectors that reflect the tokens they
contain. Word embeddings represent tokens as lower dimensional vectors so that their
relative location reflects their relationship in terms of how they are used in context. They
embody the distributional hypothesis from linguistics that claims words are best defined by
the company they keep.

Word vectors are capable of capturing numerous semantic aspects; not only are synonyms
close to each other, but words can have multiple degrees of similarity, for example, the
word driver could be similar to motorist or to cause. Furthermore, embeddings reflect
relationships among pairs of words such as analogies (Tokyo is to Japan what Paris is to
France, or went is to go what saw is to see) as we will illustrate later in this section.

Embeddings result from training a machine learning model to predict words from their
context or vice versa. In the following section, we will introduce how these neural language
models work and present successful approaches including Word2vec, Doc2vec, and
fastText.

How neural language models learn usage in
context
Word embeddings result from training a shallow neural network to predict a word given
its context. Whereas traditional language models define context as the words preceding the
target, word-embedding models use the words contained in a symmetric window
surrounding the target. In contrast, the bag-of-words model uses the entirety of documents
as context and uses (weighted) counts to capture the cooccurrence of words rather than
predictive vectors.

Earlier neural language models that were used included nonlinear hidden layers that
increased the computational complexity. Word2vec and its extensions simplified the
architecture to enable training on large datasets (Wikipedia, for example, contains over two
billion tokens; see Chapter 17, Deep Learning, for additional details on feed-forward
networks).

https://www.packtpub.com/sites/default/files/downloads/Deep_Learning.pdf

Word Embeddings Chapter 15

[443]

The Word2vec model – learn embeddings at scale
A Word2vec model is a two-layer neural net that takes a text corpus as input and outputs a
set of embedding vectors for words in that corpus. There are two different architectures to
learn word vectors efficiently using shallow neural networks depicted in the following
figure:

The Continuous-Bag-Of-Words (CBOW) model predicts the target word using
the average of the context word vectors as input so that their order does not
matter. A CBOW model trains faster and tends to be slightly more accurate for
frequent terms, but pays less attention to infrequent words.
The Skip-Gram (SG) model, by contrast, uses the target word to predict words
sampled from the context. It works well with small datasets and finds good
representations even for rare words or phrases:

Hence, the Word2vec model receives an embedding vector as input and computes the dot
product with another embedding vector. Note that, assuming normed vectors, the dot
product is maximized (in absolute terms) when vectors are equal, and minimized when
they are orthogonal.

It then uses backpropagation to adjust the embedding weights in response to the loss
computed by an objective function due to any classification errors. We will see in the next
section how Word2vec computes the loss.

Word Embeddings Chapter 15

[444]

Training proceeds by sliding the context window over the documents, typically segmented
into sentences. Each complete iteration over the corpus is called an epoch. Depending on
the data, several dozen epochs may be necessary for vector quality to converge.

Technically, the SG model has been shown to factorize a word-context matrix that contains
the pointwise mutual information of the respective word and context pairs implicitly (see
references on GitHub).

Model objective – simplifying the softmax
Word2vec models aim to predict a single word out of the potentially very large vocabulary.
Neural networks often use the softmax function that maps any number of real values to an
equal number of probabilities to implement the corresponding multiclass objective, where h
refers to the embedding and v to the input vectors, and c is the context of word w:

However, the softmax complexity scales with the number of classes, as the denominator
requires the computation of the dot product for all words in the vocabulary to standardize
the probabilities. Word2vec models gain efficiency by using a simplified version of the
softmax or sampling-based approaches (see references for details):

The hierarchical softmax organizes the vocabulary as a binary tree with words as
leaf nodes. The unique path to each node can be used to compute the word
probability.
Noise-contrastive estimation (NCE) samples out-of-context "noise words" and
approximates the multiclass task by a binary classification problem. The NCE
derivative approaches the softmax gradient as the number of samples increases,
but as few as 25 samples can yield convergence similar to the softmax, at a rate
that is 45 times faster.
Negative sampling (NEG) omits the noise word samples to approximate NCE
and directly maximizes the probability of the target word. Hence, NEG optimizes
the semantic quality of embedding vectors (similar vectors for similar usage)
rather than the accuracy on a test set. It may, however, produce poorer
representations for infrequent words than the hierarchical softmax objective.

Word Embeddings Chapter 15

[445]

Automatic phrase detection
Preprocessing typically involves phrase detection, that is, the identification of tokens that
are commonly used together and should receive a single vector representation (for
example, New York City, see the discussion of n-grams in Chapter 13, Working with Text
Data).

The original Word2vec authors use a simple lift scoring method that identifies two words
wi, wj as a bigram if their joint occurrence exceeds a given threshold relative to each word's
individual appearance, corrected by a discount factor δ:

The scorer can be applied repeatedly to identify successively longer phrases.

An alternative is the normalized point-wise mutual information score that is more accurate,
but also more costly to compute. It uses the relative word frequency P(w) and varies
between +1 and -1:

How to evaluate embeddings – vector arithmetic
and analogies
The bag-of-words model creates document vectors that reflect the presence and relevance
of tokens to the document. Latent semantic analysis reduces the dimensionality of these
vectors and identifies what can be interpreted as latent concepts in the process. Latent
Dirichlet allocation represents both documents and terms as vectors that contain the
weights of latent topics.

The dimensions of the word and phrase vectors do not have an explicit meaning. However,
the embeddings encode similar usage as proximity in the latent space in a way that carries
over to semantic relationships. This results in the interesting properties that analogies can
be expressed by adding and subtracting word vectors.

Word Embeddings Chapter 15

[446]

The following figure shows how the vector connecting Paris and France (that is, the
difference of their embeddings) reflects the capital of relationship. The analogous
relationship, London: UK, corresponds to the same vector, that is, the UK is very close to
the location obtained by adding the capital of vector to London:

Just as words can be used in different contexts, they can be related to other words in
different ways, and these relationships correspond to different directions in the latent
space. Accordingly, there are several types of analogies that the embeddings should reflect
if the training data permits.

The Word2vec authors provide a list of several thousand relationships spanning aspects of
geography, grammar and syntax, and family relationships to evaluate the quality of
embedding vectors. As illustrated above, the test validates that the target word (UK) is
closest to the result of adding the vector that represents an analogous relationship (Paris:
France) to the target's complement (London).

The following figure projects the 300-dimensional embeddings of the most closely related
analogies for a Word2vec model trained on the Wikipedia corpus, with over 2 billion
tokens, into two dimensions using principal component analysis (PCA). A test of over
24,400 analogies from the following categories achieved an accuracy of over 73.5% (see
notebook):

Word Embeddings Chapter 15

[447]

Working with embedding models

Similar to other unsupervised learning techniques, the goal of learning embedding vectors
is to generate features for other tasks such as text classification or sentiment analysis.

There are several options to obtain embedding vectors for a given corpus of documents:

Use embeddings learned from a generic large corpus such as Wikipedia or
Google News
Train your own model using documents that reflect a domain of interest

The less generic and more specialized the content of the subsequent text modeling task is,
the more preferable is the second approach. However, quality word embeddings are data-
hungry and require informative documents containing hundreds of millions of words.

How to use pre-trained word vectors
There are several sources for pretrained word embeddings. Popular options include
Stanford's GloVE and spaCy's built-in vectors (see the notebook using_trained_vectors
for details).

Word Embeddings Chapter 15

[448]

GloVe – global vectors for word representation
GloVe is an unsupervised algorithm developed at the Stanford NLP lab that learns vector
representations for words from aggregated global word-word co-occurrence statistics (see
references). Vectors pretrained on the following web-scale sources are available:

Common Crawl with 42B or 840B tokens and a vocabulary or 1.9M or 2.2M
tokens
Wikipedia 2014 + Gigaword 5 with 6B tokens and a vocabulary of 400K tokens
Twitter using 2B tweets, 27B tokens and a vocabulary of 1.2M tokens

We can use gensim to convert and load the vector text files into the KeyedVector object:

from gensim.models import Word2vec, KeyedVectors
 from gensim.scripts.glove2Word2vec import glove2Word2vec
glove2Word2vec(glove_input_file=glove_file, Word2vec_output_file=w2v_file)
 model = KeyedVectors.load_Word2vec_format(w2v_file, binary=False)

The Word2vec authors provide text files containing over 24,000 analogy tests that gensim
uses to evaluate word vectors.

The word vectors trained on the Wikipedia corpus cover all analogies and achieve an
overall accuracy of 75.5% with some variation across categories:

Category Samples Accuracy Category Samples Accuracy
capital-common-countries 506 94.86% comparative 1,332 88.21%
capital-world 8,372 96.46% superlative 1,056 74.62%
city-in-state 4,242 60.00% present-participle 1,056 69.98%
currency 752 17.42% nationality-adjective 1,640 92.50%
family 506 88.14% past-tense 1,560 61.15%
adjective-to-adverb 992 22.58% plural 1,332 78.08%
opposite 756 28.57% plural-verbs 870 58.51%

The Common Crawl vectors for the 100,000 most common tokens cover about 80% of the
analogies and achieve slightly higher accuracy at 78%, whereas the Twitter vectors cover
only 25% with 62% accuracy.

Word Embeddings Chapter 15

[449]

How to train your own word vector embeddings
Many tasks require embeddings or domain-specific vocabulary that pretrained models
based on a generic corpus may not represent well or at all. Standard Word2vec models are
not able to assign vectors to out-of-vocabulary words and instead use a default vector that
reduces their predictive value.

For example, when working with industry-specific documents, the vocabulary or its usage
may change over time as new technologies or products emerge. As a result, the
embeddings need to evolve as well. In addition, corporate earnings releases use nuanced
language not fully reflected in GloVe vectors pretrained on Wikipedia articles.

We will illustrate the Word2vec architecture using the Keras library that we will introduce
in more detail in the next chapter and the more performant gensim adaptation of the code
provided by the Word2vec authors. The notebook Word2vec contains additional
implementation detail, including a reference of a TensorFlow implementation.

The Skip-Gram architecture in Keras
To illustrate the Word2vec network architecture, we use the TED Talk dataset with aligned
English and Spanish subtitles that we first introduced in Chapter 13, Working with Text
Data.

The notebook contains the code to tokenize the documents and assign a unique ID to each
item in the vocabulary. We require at least five occurrences in the corpus and keep a
vocabulary of 31,300 tokens.

Noise-contrastive estimation
Keras includes a make_sampling_table method that allows us to create a training set as
pairs of context and noise words with corresponding labels, sampled according to their
corpus frequencies.

The result is 27 million positive and negative examples of context and target pairs.

The model components
The Skip-Gram model contains a 200-dimensional embedding vector for each vocabulary
item, resulting in 31,300 x 200 trainable parameters, plus two for the sigmoid output.

https://cdp.packtpub.com/hands_on_machine_learning_for_algorithmic_trading/wp-admin/post.php?post=682&action=edit#post_584

Word Embeddings Chapter 15

[450]

In each iteration, the model computes the dot product of the context and the target-
embedding vectors, passes the result through the sigmoid to produce a probability and
adjusts the embedding based on the gradient of the loss.

Visualizing embeddings using TensorBoard
TensorBoard is a visualization tool that permits the projection of the embedding vectors
into three dimensions to explore the word and phrase locations.

Word vectors from SEC filings using gensim
In this section, we will learn word and phrase vectors from annual US Securities and
Exchange Commission (SEC) filings using gensim to illustrate the potential value of word
embeddings for algorithmic trading. In the following sections, we will combine these
vectors as features with price returns to train neural networks to predict equity prices from
the content of security filings.

In particular, we use a dataset containing over 22,000 10-K annual reports from the period
2013-2016 that are filed by listed companies and contain both financial information and
management commentary (see Chapter 3, Alternative Data for Finance). For about half of the
11-K filings for companies, we have stock prices to label the data for predictive modeling
(see references about data sources and the notebooks in the sec-filings folder for
details).

Preprocessing
Each filing is a separate text file and a master index contains filing metadata. We extract the
most informative sections, namely, the following:

Items 1 and 1A: Business and Risk Factors
Items 7 and 7A: Management's Discussion and Disclosures about Market Risks

The notebook preprocessing shows how to parse and tokenize the text using spaCy, similar
to the approach taken in Chapter 14, Topic Modeling. We do not lemmatize the tokens to
preserve the nuances of word usage.

Word Embeddings Chapter 15

[451]

Automatic phrase detection
We use gensim to detect phrases as previously introduced. The Phrases module scores the
tokens and the Phraser class transforms the text data accordingly. The notebook shows
how to repeat the process to create longer phrases:

sentences = LineSentence(f'ngrams_1.txt')
phrases = Phrases(sentences=sentences,
 min_count=25, # ignore terms with a lower count
 threshold=0.5, # only phrases with higher score
 delimiter=b'_', # how to join ngram tokens
 scoring='npmi') # alternative: default
grams = Phraser(phrases)
sentences = grams[sentences]

The most frequent bigrams include common_stock, united_states, cash_flows,
real_estate, and interest_rates.

Model training
The gensim.models.Word2vec class implements the SG and CBOW architectures
introduced previously. The Word2vec notebook contains additional implementation detail.

To facilitate memory-efficient text ingestion, the LineSentence class creates a generator
from individual sentences contained in the provided text file:

sentence_path = Path('data', 'ngrams', f'ngrams_2.txt')
sentences = LineSentence(sentence_path)

The Word2vec class offers the configuration options previously introduced:

model = Word2vec(sentences,
 sg=1, # 1=skip-gram; otherwise CBOW
 hs=0, # hier. softmax if 1, neg. sampling if 0
 size=300, # Vector dimensionality
 window=3, # Max dist. btw target and context word
 min_count=50, # Ignore words with lower frequency
 negative=10, # noise word count for negative sampling
 workers=8, # no threads
 iter=1, # no epochs = iterations over corpus
 alpha=0.025, # initial learning rate
 min_alpha=0.0001 # final learning rate
)

Word Embeddings Chapter 15

[452]

The notebook shows how to persist and reload models to continue training, or how to store
the embedding vectors separately, for example, for use in ML models.

Model evaluation
Basic functionality includes identifying similar words:

model.wv.most_similar(positive=['iphone'],
 restrict_vocab=15000)
 term similarity
0 android 0.600454
1 smartphone 0.581685
2 app 0.559129

We can also validate individual analogies using positive and negative contributions
accordingly:

model.wv.most_similar(positive=['france', 'london'],
 negative=['paris'],
 restrict_vocab=15000)

 term similarity
0 united_kingdom 0.606630
1 germany 0.585644
2 netherlands 0.578868

Performance impact of parameter settings
We can use the analogies to evaluate the impact of different parameter settings. The
following results stand out (see detailed results in the models folder):

Negative sampling outperforms the hierarchical softmax, while also training
faster
The Skip-Gram architecture outperforms CBOW given the objective function
Different min_count settings have a smaller impact, with the midpoint of 50
performing best

Word Embeddings Chapter 15

[453]

Further experiments with the best performing SG model, using negative sampling and a
min_count of 50, show the following:

Smaller context windows than five lower the performance
A higher negative sampling rate improves performance at the expense of slower
training
Larger vectors improve performance, with a size of 600 yielding the best
accuracy at 38.5%

Sentiment analysis with Doc2vec
Text classification requires combining multiple word embeddings. A common approach is
to average the embedding vectors for each word in the document. This uses information
from all embeddings and effectively uses vector addition to arrive at a different location
point in the embedding space. However, relevant information about the order of words is
lost.

By contrast, the state-of-the-art generation of embeddings for pieces of text such as a
paragraph or a product review is to use the document-embedding model Doc2vec. This
model was developed by the Word2vec authors shortly after publishing their original
contribution.

Similar to Word2vec, there are also two flavors of Doc2vec:

The distributed bag of words (DBOW) model corresponds to the Word2vec
CBOW model. The document vectors result from training a network in the
synthetic task of predicting a target word based on both the context word vectors
and the document's doc vector.
The distributed memory (DM) model corresponds to the Word2vec Skip-Gram
architecture. The doc vectors result from training a neural net to predict a target
word using the full document's doc vector.

Gensim's Doc2vec class implements this algorithm.

Word Embeddings Chapter 15

[454]

Training Doc2vec on yelp sentiment data
We use a random sample of 500,000 Yelp (see Chapter 13, Working with Text Data) reviews
with their associated star ratings (see notebook yelp_sentiment):

df = (pd.read_parquet('yelp_reviews.parquet', engine='fastparquet')
 .loc[:, ['stars', 'text']])
stars = range(1, 6)
sample = pd.concat([df[df.stars==s].sample(n=100000) for s in stars])

We apply use simple pre-processing to remove stopwords and punctuation using NLTK's
tokenizer and drop reviews with fewer than 10 tokens:

import nltk
nltk.download('stopwords')
from nltk import RegexpTokenizer
from nltk.corpus import stopwords
tokenizer = RegexpTokenizer(r'\w+')
stopword_set = set(stopwords.words('english'))

def clean(review):
 tokens = tokenizer.tokenize(review)
 return ' '.join([t for t in tokens if t not in stopword_set])

sample.text = sample.text.str.lower().apply(clean)
sample = sample[sample.text.str.split().str.len()>10]

Create input data
The gensim.models.doc2vec class processes documents in the TaggedDocument format
that contains the tokenized documents alongside a unique tag that permits accessing the
document vectors after training:

sentences = []
for i, (_, text) in enumerate(sample.values):
 sentences.append(TaggedDocument(words=text.split(), tags=[i]))

The training interface works similar to word2vec with additional parameters to specify the
Doc2vec algorithm:

model = Doc2vec(documents=sentences,
 dm=1, # algorithm: use distributed memory
 dm_concat=0, # 1: concat, not sum/avg context vectors
 dbow_words=0, # 1: train word vectors, 0: only doc
 vectors
 alpha=0.025, # initial learning rate

Word Embeddings Chapter 15

[455]

 size=300,
 window=5,
 min_count=10,
 epochs=5,
 negative=5)
model.save('test.model')

You can also use the train() method to continue the learning process and, for example,
iteratively reduce the learning rate:

for _ in range(10):
 alpha *= .9
 model.train(sentences,
 total_examples=model.corpus_count,
 epochs=model.epochs,
 alpha=alpha)

As a result, we can access the document vectors as features to train a sentiment classifier:

X = np.zeros(shape=(len(sample), size))
y = sample.stars.sub(1) # model needs [0, 5) labels
for i in range(len(sample)):
 X[i] = model[i]

We will train a lightgbm gradient boosting machine as follows:

Create lightgbm Dataset objects from the train and test sets:1.

train_data = lgb.Dataset(data=X_train, label=y_train)
test_data = train_data.create_valid(X_test, label=y_test)

Define the training parameters for a multiclass model with five classes (using2.
defaults otherwise):

params = {'objective' : 'multiclass',
 'num_classes': 5}

Train the model for 250 iterations and monitor the validation set error:3.

lgb_model = lgb.train(params=params,
 train_set=train_data,
 num_boost_round=250,
 valid_sets=[train_data, test_data],
 verbose_eval=25)

Word Embeddings Chapter 15

[456]

Lightgbm predicts probabilities for all five classes. We obtain class predictions4.
using np.argmax() to obtain the column index with the highest predicted
probability:

y_pred = np.argmax(lgb_model.predict(X_test), axis=1)

We compute the accuracy score to evaluate the result and see an improvement of5.
more than 100% over the baseline of 20% for five balanced classes:

accuracy_score(y_true=y_test, y_pred=y_pred)
0.44955063467061984

Finally, we take a closer look at predictions for each class using the confusion6.
matrix:

cm = confusion_matrix(y_true=y_test, y_pred=y_pred)
cm = pd.DataFrame(cm / np.sum(cm), index=stars, columns=stars)

And visualize the result as a seaborn heatmap:7.

sns.heatmap(cm, annot=True, cmap='Blues', fmt='.1%')

Word Embeddings Chapter 15

[457]

In sum, the doc2vec method allowed us to achieve a very substantial improvement in test
accuracy over a naive benchmark without much tuning. If we only select top and bottom
reviews (with five and one stars, respectively) and train a binary classifier, the AUC score
achieves over 0.86 using 250,000 samples from each class.

Bonus – Word2vec for translation
The notebook translation demonstrates that the relationships encoded in one language
often correspond to similar relationships in another language.

It illustrates how word vectors can be used to translate words and phrases by projecting
word vectors from the embedding space of one language into the space of another language
using a translation matrix.

Summary
This chapter started with how word embeddings encode semantics for individual tokens
more effectively than the bag-of-words model that we used in Chapter 13, Working with
Text Data. We also saw how to evaluated embedding by validating if semantic relationships
among words are properly represented using linear vector arithmetic.

To learn word embeddings, we use shallow neural networks that used to be slow to train at
the scale of web data containing billions of tokens. The word2vec model combines several
algorithmic innovations to dramatically speed up training and has established a new
standard for text feature generation. We saw how to use pretrained word vectors using
spaCy and gensim, and learned to train our own word vector embeddings. We then
applied a word2vec model to SEC filings. Finally, we covered the doc2vec extension that
learns vector representations for documents in a similar fashion as word vectors and
applied it to Yelp business reviews.

Now, we will begin part 4 on deep learning (available online as mentioned in the Preface),
starting with an introduction to feed-forward networks, popular deep learning frameworks
and techniques for efficient training at scale.

16
Next Steps

The goal of this book was to enable you to apply machine learning (ML) to a variety of
data sources and the extract signals useful for the design and execution of an investment
strategy. To this end, we introduced ML as an important element in the trading strategy
process. We saw that ML can add value at multiple steps in the process of designing,
testing, executing, and evaluating a strategy.

It became clear that the core value proposition of ML consists of the ability to extract
actionable information from much larger amounts of data more systematically than human
experts would ever be able to. On the one hand, this value proposition has really gained
currency with the explosion of digital data that made it both more promising and necessary
to leverage computing power for data processing. On the other hand, the application of ML
still requires significant human intervention and expertise to define objectives, select and
curate data, design and optimize a model and make appropriate use of the results.

In this concluding chapter, we will briefly summarize the key tools, applications, and
lessons learned throughout the book to avoid losing sight of the big picture after so much
detail. We will then identify areas that we did not cover but would be worthwhile to focus
on as you aim to expand on the many ML techniques we introduced and become
productive in their daily use. We will highlight skill sets that are valuable for individual
productivity.

In summary, in this chapter, we will go through the following topics:

Review key takeaways and lessons learned,
Point out the next steps to build on the techniques in this book,
Suggest ways to incorporate ML into your investment process.

Next Steps Chapter 16

[459]

Key takeaways and lessons learned
Important insights to keep in mind as you proceed to the practice of ML for trading
include:

Data is the single most important ingredient
Domain expertise helps realize the potential value in the data, especially in
finance
ML offers tools for many use cases that should be further developed and
combined to create solutions for new problems using data
The choice of model objectives and performance diagnostics are key to
productive iterations towards an optimal system
Backtest overfitting is a huge challenge that requires significant attention
Transparency around black-box models can help build confidence and facilitate
adoption

We will elaborate a bit more on each of these ideas.

Data is the single most important ingredient
The rise of ML in trading and everywhere else largely complements the data explosion that
we covered in great detail. We illustrated in Chapter 2, Market and Fundamental Data how
to access and work with these data sources, historically the mainstay of quantitative
investment. In Chapter 3, Alternative Data for Finance, we laid out a framework with the
criteria to assess the potential value of alternative datasets.

A key insight is that the state-of-the-art ML techniques like deep neural networks are
successful because their predictive performance continues to improve with more data. On
the flip side, model and data complexity need to match to balance the bias-variance trade-
off. Managing data quality and integrating datasets are key steps in realizing the potential
value.

Quality control
Just like oil, a popular comparison these days, data passes through a pipeline with several
stages from its raw form to a refined product that can fuel a trading strategy. It is critical to
pay careful attention to the quality of the final product to get the desired mileage out of it.

Next Steps Chapter 16

[460]

Sometimes, you get data in raw form and control the numerous transformations required
for your purposes. More often, you deal with an intermediate product and should get
clarity about what exactly the data measures at this point.

Different from oil, there is often no objective quality standard as data sources continue to
proliferate. Instead, the quality depends on its signal content, which in turn depends on
your investment objectives. The cost-effective evaluation of new datasets requires a
productive workflow, including appropriate infrastructure that we will address in the
following section.

Data integration
The value of data for an investment strategy often depends on combining complementary
sources of market, fundamental and alternative data. We saw that the predictive power of
ML algorithms like tree-based ensembles or neural networks is in part due to their ability to
detect non-linear relationships, in particular, interaction effects among variables.

The ability to modulate the impact of a variable as a function of other model features
thrives on data inputs that capture different aspects of a target outcome. The combination
of asset prices with macro fundamentals, social sentiment, credit card payment, and
satellite data will likely yield significantly more reliable predictions throughout different
economic and market regimes than each source on its own (provided there the data is large
enough to learn the hidden relationships).

Working with data from multiple sources increases the challenges of proper labeling. It is
vital to assign accurate timestamps to avoid a lookahead bias by testing an algorithm with
data before it actually became available. Data, for example, may have timestamps assigned
by a provider that require adjustments to reflect the point in time when they would have
been available for a live algorithm.

Domain expertise helps unlock value in data
We emphasized that data is a necessary driver of successful ML applications, but that
domain expertise is also crucial to inform strategic direction, feature engineering and data
selection, and model design.

Next Steps Chapter 16

[461]

In any domain, practitioners have theories about the drivers of key outcomes and
relationships among them. Finance stands out by the amount of relevant quantitative
research, both theoretical and empirical. Marcos López de Prado and others (see GitHub for
references https:/ /github. com/ PacktPublishing/ Hands- On- Machine- Learning- for-
Trading) criticize most empirical results given pervasive data mining that may invalidate
the findings. Nonetheless, a robust understanding of how financial markets work exists and
should inform the selection and use of data as well as the justification of strategies that rely
on machine learning. We outlined key ideas in Chapter 4, Alpha Factor Research and
Chapter 5, Strategy Evaluation.

On the other hand, novel ML techniques will likely uncover new hypotheses about drivers
of financial outcomes that will inform ML theory and should then be independently tested.

Feature engineering and alpha factor research
More than the raw data, feature engineering is often the key to making signal useful for an
algorithm. Leveraging decades of research into risk factors that drive returns on theoretical
and empirical grounds is a good starting point to prioritize data transformations that are
more likely to reflect relevant information.

However, only creative feature engineering will lead to innovative strategies that can
compete in the market over time. Even for new alpha factors, a compelling narrative that
explains how they work, given established ideas on market dynamics and investor
behavior, will provide more confidence to allocate capital.

The risks of false discoveries and overfitting to historical data make it even more necessary
to prioritize strategies prior to testing rather than let the data speak. We covered how to
deflate the Sharpe ratio in light of the number of experiments.

ML is a toolkit for solving problems with data
ML offers algorithmic solutions and techniques that can be applied to many use cases. Parts
2, 3, and 4 of the book (as mentioned in Chapter 1, Machine Learning for Trading) have
presented ML as a diverse set of tools that can add value to various steps of the strategy
process, including:

Idea generation and alpha factor research,
Signal aggregation and portfolio optimization,
Strategy testing

https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Trading

Next Steps Chapter 16

[462]

Trade execution, and
Strategy evaluation

Even more so, ML algorithms are designed to be further developed, adapted and combined
to solve new problems in different contexts. For these reasons, it is important to understand
key concepts and ideas underlying these algorithms, in addition to being able to apply
them to data for productive experimentation and research as outlined in Chapter 6, The
Machine Learning Process.

Furthermore, the best results are often achieved by combining human experts with ML
tools. In Chapter 1, Machine Learning for Trading, we covered the quantamental investment
style where discretionary and algorithmic trading converge. This approach will likely
further grow in importance and depends on the flexible and creative application of the
fundamental tools that we covered and their extensions to a variety of data sets.

Model diagnostics help speed up optimization
In Chapter 6, The Machine Learning Process, we outlined some of the most important
concepts. ML algorithms learn relationships between input data and a target by making
assumptions about the functional form. If the learning is based on noise rather than signal,
predictive performance will suffer.

Of course, we do not know today how to separate signal and noise from the perspective of
tomorrow's outcomes. Model diagnostics, for example, using learning curves and the
optimization verification test can help alleviate this fundamental challenge and calibrate the
choice or configuration of an algorithm to the data or task at hand. This task can be made
easier by defining focused model objectives and, for complex models, distinguishing
between performance shortcomings due to issues with the optimization algorithm or the
objective itself.

Making do without a free lunch
No system—computer program or human—has a basis to reliably predict outcomes for
new examples beyond those it observed during training. The only way out is to have some
additional prior knowledge or make assumptions that go beyond the training examples.
We covered a broad range of algorithms from Chapter 7, Linear Models and Chapter
8, Time Series Models, to non-linear ensembles in Chapter 10, Decision Trees and Random
Forest and Chapter 11, Gradient Boosting Machines as well as neural networks in various
chapters of part 4 of this book.

Next Steps Chapter 16

[463]

We saw that a linear model makes a strong assumption that the relationship between
inputs and outputs has a very simple form, whereas the models discussed later aim to learn
more complex functions. While it's probably obvious that a simple model will fail in most
circumstances, a complex model is not always better. If the true relationship is linear but
the data is noisy, the complex model will learn the noise as part of the complex relationship
that it assumes to exist. This is the basic idea behind the No Free Lunch Theorem that states
no algorithm is universally superior for all tasks. Good fit in some instances comes at the
cost of poor performance elsewhere.

The key tools to tailor the choice of the algorithm to the data are data exploration and
experiments based on an understanding of the assumptions the model makes.

Managing the bias-variance trade-off
A different perspective on the challenge of adapting an algorithm to data is the trade-off
between bias and variance that cause prediction errors beyond the natural noisiness of the
data. A simple model that does not adequately capture the relationships in the data will
underfit and exhibit bias, that is, make systematically wrong predictions. A model that is
too complex will overfit and learn the noise in addition to any signal so that the result will
show a lot of variance for different samples.

The key tool to diagnose this trade-off at any given iteration of the model selection and
optimization process is the learning curve. It shows how training and validation errors
depend on the sample size. This allows us to decide between different options to improve
performance: adjust the complexity of the model or get more data points.

The closer the training error is to human or other benchmarks, the more likely the model
will overfit. The low validation error tells us that we are lucky and found a good model. If
the validation error is high, we are not. If it continues to decline with the training size,
however, more data may help. If the training error is high, more data is unlikely to help
and we should instead add features or use a more flexible algorithm.

Define targeted model objectives
One of the first steps in the machine learning process is the definition of an objective for the
algorithm to optimize. Sometimes, the choice is simple, for example, in a regression
problem. A classification task can be more difficult, for example, when we care about
precision and recall. Consolidating conflicting objectives into a single metric like the F1
score helps to focus optimization efforts. We can also include conditions that need to be met
rather than optimized for. We also saw that reinforcement learning is all about defining the
right reward function to guide the agent's learning process.

Next Steps Chapter 16

[464]

The optimization verification test
Andrew Ng (see references on GitHub: https:/ /github. com/ PacktPublishing/ Hands- On-
Machine-Learning- for- Algorithmic- Trading) emphasizes the distinction between
performance shortcomings due to a problem with the learning algorithm or the
optimization algorithm. Complex models like neural networks assume non-linear
relationships and the search process of the optimization algorithm may end up in a local
rather than a global optimum.

If, for example, a model fails to correctly translate a phrase, the test compares the scores for
the correct prediction and the solution discovered by the search algorithm. If the learning
algorithm scores the correct solution higher, the search algorithm requires improvements.
Otherwise, the learning algorithm is optimizing for the wrong objective.

Beware of backtest overfitting
We covered the risks of false discoveries due to overfitting to historical data repeatedly
throughout the book. Chapter 5, Strategy Evaluation lays out the main drivers and potential
remedies. The low noise-to-signal ratio and relatively small datasets (compared to a web-
scale image or text data) make this challenge particularly serious in the trading domain.
Awareness is critical because the ease of access to data and tools to apply ML increase the
risks exponentially.

There is no escape because there is no method of prevention. However, we presented
methods to adjust backtest metrics to account for repeated trials such as the deflated Sharpe
ratio. When working towards a live trading strategy, stage paper-trading and closely
monitored performance during execution in the market need to be part of the
implementation process.

How to gain insights from black-box models
Deep neural networks and complex ensembles can raise suspicion when they are
considered impenetrable black-box models, in particular in light of the risks of backtest
overfitting. We introduced several methods to gain insights into how these models make
predictions in Chapter 11, Gradient Boosting Machines.

https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading

Next Steps Chapter 16

[465]

In addition to conventional measures of feature importance, the recent game-theoretic
innovation of SHapley Additive exPlanations (SHAP) is a significant step towards
understanding the mechanics of complex models. SHAP values allow for exact attribution
of features and their values to predictions so that it becomes easier to validate the logic of a
model in the light of specific theories about market behavior for a given investment target.
Besides justification, exact feature importance scores and attribution of predictions allow
for deeper insights into the drivers of the investment outcome of interest.

On the other hand, there is some controversy to which extend transparency around model
predictions should be a goal in itself. Geoffrey Hinton, one of the inventors of deep
learning, argues that human decisions are also often obscure and machines should similarly
be evaluated by their results, as we expect from investment managers.

ML for trading in practice
As you proceed to integrate the numerous tools and techniques into your investment and
trading process, there are numerous things you could focus your efforts on. If your goal is
to make better decisions, you should select projects that are realistic yet ambitious given
your current skill set. This will help you to develop an efficient workflow underpinned by
productive tools and gain practical experience.

We will briefly list some of the tools that are useful to expand on the Python ecosystem
covered in this book and refer to the links listed on GitHub to dive deeper. These include
big data technologies that will eventually be necessary to implement ML for trading
strategies at scale. We will also list some of the platforms that allow you to
implement trading strategies using Python, often with access to data sources and ML
algorithms and libraries.

Data management technologies
The central role of data in the ML process requires familiarity with a range of technologies
to store, transform, and analyze data at scale, including the use of cloud-based services
such as Amazon Web Services, Azure, and Google Cloud.

Next Steps Chapter 16

[466]

Database systems
Data storage implies the use of databases, historically dominated by relational database
management systems (RDBMS) that use SQL to store and retrieve data in a well-defined
table format with commercial providers like Oracle and Microsoft and open-source
implementations like PostgreSQL and MySQL. More recently, alternatives have emerged
that are often collectively labeled NoSQL but are quite diverse, namely:

Key-value storage: Fast read/write access to objects. We covered the HDF5
format in Chapter 2, Market and Fundamental Data that facilitates fast access to a
pandas DataFrame.
Columnar storage: Capitalizes on the homogeneity of data in a column to
facilitates compression and faster column-based operations such as aggregation.
Used in the popular Amazon Redshift data warehouse solution, Apache Parquet,
Cassandra, or Google's Big Table.
Document store: Designed to store data that defies the rigid schema definition
required by an RDBMS. Popularized by web applications that use JSON or XML
format that we encountered in Chapter 4, Alpha Factor Research. Used, for
example, in MongoDB.
Graph database: Designed to store networks that have nodes and edges and
specializes in queries about network metrics and relationships. Used in Neo4J
and Apache Giraph.

There has been some conversion towards the conventions established by the relational
database systems. The Python ecosystem facilitates the interaction with many standard
data sources and provides fast HDF5 and Parquet formats as demonstrated throughout the
book.

Big Data technologies – Hadoop and Spark
Data management at scale, that is, hundreds of GB and beyond, require the use of multiple
machines that form a cluster to conduct read, write and compute operations in parallel, that
is, it is distributed over various machines.

Next Steps Chapter 16

[467]

The Hadoop ecosystem has emerged as an open-source software framework for distributed
storage and processing of big data using the MapReduce programming model developed
by Google. The ecosystem has diversified under the roof of the Apache Foundation and
today includes numerous projects that cover different aspects of data management at scale.
Key tools within Hadoop include:

Apache Pig: Data processing language to implement large-scale extract-
transform-load (ETL) pipelines using MapReduce, developed at Yahoo
Apache Hive: The defacto standard for interactive SQL queries over petabytes of
data developed at Facebook
Apache HBASE: NoSQL database for real-time read/write access that scales
linearly to billions of rows and millions of columns, and can combines data
sources using a variety of different schemas.

Apache Spark has become the most popular platform for interactive analytics on a cluster.
The MapReduce framework allowed for parallel computation but required repeated
read/write operations from disk to ensure data redundancy. Spark has dramatically
accelerated computation at scale due to the Resilient Distributed Data (RDD) structure
that allows for highly optimized in-memory computation. This includes iterative
computation as required for optimization, for example gradient descent for numerous ML
algorithms.

ML tools
We covered many libraries of the Python ecosystem in this book. Python has evolved to
become the language of choice for data science and ML and the set of open-source libraries
continues to both diversify and mature, built on the robust core of scientific computing
libraries NumPy and SciPy. The popular pandas library that has contributed significantly to
popularizing the use of Python for data science is planning its 1.0 release. The scikit-learn
interface has become the standard for modern ML libraries like xgboost or lightgbm that
often interface with the various workflow automation tools like GridSearchCV and
Pipeline that we used repeatedly throughout the book.

There are several providers that aim to facilitate the ML workflow:

H2O.ai (https:/ / www. h2o. ai/) offers the H2O platform that integrates cloud
computing with ML automation. It allows users to fit thousands of potential
models to their data to explore patterns in the data. It has interfaces in Python as
well as R and Java.

https://www.h2o.ai/
https://www.h2o.ai/
https://www.h2o.ai/
https://www.h2o.ai/
https://www.h2o.ai/
https://www.h2o.ai/
https://www.h2o.ai/
https://www.h2o.ai/
https://www.h2o.ai/
https://www.h2o.ai/

Next Steps Chapter 16

[468]

DataRobot aims to automate the model development process by providing
a platform to rapidly build and deploy predictive models in the cloud or on-
premise.
Dataiku is a collaborative data science platform designed to help the analysts and
engineers explore, prototype, build, and deliver their own data products

There are also several open-source initiatives led by companies that build on and expand
the Python ecosystem:

The quantitative hedge fund Two Sigma contributes quantitative analysis tools to
the Jupyter Notebook environment under the beakerx project
Bloomberg has integrated the Jupyter Notebook into its terminal to facilitate the
interactive analysis of their financial data

Online trading platforms
The main options to develop trading strategies that use machine learning are online
platforms that often look for and allocate capital to successful trading strategies. Popular
solutions include Quantopian, Quantconnect, QuantRocket, and the more recent Alpha
Trading Labs that focuses on high-frequency trading.

In addition, Interactive Brokers (IB) offers a Python API that you can use to develop your
own trading solution.

Quantopian
We introduced the Quantopian platform and demonstrated the use of its research and
trading environment to analyze and test trading strategies against historical data.
Quantopian uses Python and offers lots of educational material.

Quantopian hosts ongoing daily competitions to recruit algorithms for its crowd-sourced
hedge fund portfolio. Quantopian provides capital to the winning algorithm. Live-trading
was discontinued in September 2017, but the platform still provides a large range of
historical data and attracts an active community of developers and traders that is a good
starting point to discuss ideas and learn from others.

Next Steps Chapter 16

[469]

QuantConnect
QuantConnect is another open source, community-driven algorithmic trading platform
that competes with Quantopian. It also provides an IDE to backtest and live-trade
algorithmic strategies using Python and other languages.

QuantConnect also has a dynamic, global community from all over the world, and provides
access to numerous asset classes, including equities, futures, forex, and cryptocurrency. It
offers live-trading integration with various brokers such as IB, OANDA, and GDAX.

QuantRocket
QuantRocket is a Python-based platform for researching, backtesting, and running
automated, quantitative trading strategies. It provides data collection tools, multiple data
vendors, a research environment, multiple backtesters, and live and paper trading through
IB. It prides itself on support for international equity trading and sets itself apart with its
flexibility.

QuantRocket supports multiple engines — its own Moonshot, as well as third-party engines
chosen by the user. While QuantRocket doesn't have a traditional IDE, it is integrated well
with Jupyter to produce something similar. QuantRocket is not free, however, and pricing
starts at 19 USD/month at the time of writing.

Conclusion
We started by highlighting the explosion of digital data and the emergence of ML as a
strategic capability for investment and trading strategies. This dynamic reflects global
business and technology trends beyond finance and is much more likely to continue than to
stall or reverse. Many investment firms are just getting started to leverage the range of
artificial intelligence tools, just as individuals are acquiring the relevant skills and business
processes are adapting to these new opportunities for value creation, as outlined in the
introductory chapter.

There are also numerous exciting developments for the application of ML to trading on the
horizon that are likely to further propel the current momentum. They are likely to become
relevant in the coming years and include the automation of the ML process, the generation
of synthetic training data, and the emergence of quantum computing. The extraordinary
vibrancy of the field implies that this alone could fill a book and the journey will continue
to remain exciting.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Machine Learning Algorithms - Second Edition
Giuseppe Bonaccorso

ISBN: 9781789347999

Study feature selection and the feature engineering process
Assess performance and error trade-offs for linear regression
Build a data model and understand how it works by using different types of
algorithm
Learn to tune the parameters of Support Vector Machines (SVM)
Explore the concept of natural language processing (NLP) and recommendation
systems
Create a machine learning architecture from scratch

https://www.packtpub.com/big-data-and-business-intelligence/machine-learning-algorithms-second-edition

Other Books You May Enjoy

[471]

Building Machine Learning Systems with Python - Third Edition
Luis Pedro Coelho, Willi Richert, Matthieu Brucher

ISBN: 9781788623223

Build a classification system that can be applied to text, images, and sound
Employ Amazon Web Services (AWS) to run analysis on the cloud
Solve problems related to regression using scikit-learn and TensorFlow
Recommend products to users based on their past purchases
Understand different ways to apply deep neural networks on structured data
Address recent developments in the field of computer vision and reinforcement
learning

https://www.packtpub.com/big-data-and-business-intelligence/building-machine-learning-systems-python-third-edition

Other Books You May Enjoy

[472]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
adaptive boosting (AdaBoost) algorithm
 about 314, 315
 using, with sklearn 317, 319
algorithmic innovations, for performance

improvement
 categorical features 331
 categorical features, treating 332
 depth-wise, versus leaf-wise growth 330
 features and optimizations 333
 GPU-based training 331
 second-order loss function approximation 328
 split-finding algorithms 330
algorithmic trading strategies 29
alpha 88, 123
alpha factors
 about 88, 89
 research 461
 resources 117
alphalens
 using 110
alternative data revolution 66, 67
alternative data, sources
 businesses 67, 68, 69
 individual 67, 68
 sensors 67, 69, 70
alternative data
 working with 79
alternative datasets
 evaluating 71
 evaluation criteria 72
Alternative Trading Systems (ATS) 16
alternatives, mean-variance optimization
 1/n portfolio 140
 Global Portfolio Optimization 141
 hierarchical risk parity 145

 Kelly rule 142
 minimum-variance portfolio 141
 risk factor investment 145
 Risk Parity 144
analytical tools
 for diagnostics and feature extraction 225, 226
API access
 to market data 50
Applied Quantitative Research (AQR) 21
appraisal risk 124
approximate inference
 deterministic methods 267
 Markov Chain Monte Carlo sampling 268
 sampling-based stochastic inference 268
 stochastic techniques 267
 Variational Inference (VI) 270
Arbitrage Pricing Theory (APT) 192
area under the curve (AUC) 159
ARIMA models
 AR term count, identifying 240
 ARMAX 240
 building 239
 MA term count, identifying 240
 SARIMAX 241
Artificial Intelligence (AI) 22, 153
asset price moves, probabilities
 estimating dynamically 265, 267
Assets Under Management (AUM) 20
autocorrelation
 measuring 229
autoencoders 152
autoregressive conditional heteroskedasticity

(ARCH) model 244
autoregressive models
 building 237
 fitness, diagnosing 238
 number of lags, identifying 237

[474]

averaging methods 302

B
backtest overfitting
 risks 464
backtesting pitfalls
 avoiding 129
 backtest length 133
 backtest-overfitting 132
 data challenges 130
 data-snooping 132
 implementation issues 131
 optimal stopping 133
backtests 73
bag-of-words (BoW) model 391, 442
Baltic Dry Index (BDI) 67
Bayes' Theorem 409
Bayesian Information Criterion (BIC) 185
Bayesian logistic regression
 about 273
 Generalized Linear Models module 275
 MAP inference 275
 visualization and plate notation 274
Bayesian machine learning
 assumptions, updating from empirical evidence

262

 maximum a posteriori probability (MAP) 263
 Theano, using 272
 working 261
Bayesian time series models 282
BeautifulSoup
 data, extracting from HTML 80
bets
 multiple assets 144
 optimal size 142, 143
 single asset 143
 sizing 142
bias-variance trade-off 150
binary data formats
 creating 333
black-box models
 insights, gaining 464
Black-Litterman approach 141
boosting methods 302
BoW model 401

browser automation
 using 81
Broyden-Fletcher-Goldfarb-Shanno (BFGS)

algorithm 275
built-in Quantopian factors 103, 105

C
Capital Asset Pricing Model (CAPM) 18, 96, 191
carry 19
CatBoost 333
causal inference 155
Central Index Key (CIK) 60
challenges, with cross-validation in finance
 about 172
 combinatorial CV 174
 embargoing CV 173
 purging CV 173
 time series cross-validation 173
Chicago Mercantile Exchange (CME) 33
classification 215
classification tree
 building 291
 optimizing, for node purity 291
 training 292
cluster algorithms
 density-based clusters 152
 Gaussian mixture models 151
 hierarchical clusters 152
 K-means clustering 151
clustering
 about 376
 k-Means clustering 377
cointegration
 about 256
 testing 257
 using, for pairs-trading strategy 258
computer-to-computer interface (CTCI) 37
constant proportion portfolio insurance (CPPI) 91
Continuous-bag-of-words (CBOW) model 443
cosine similarity 403
CountVectorizer
 most similar documents, finding 405
 using 404
 vocabulary distribution, visualizing 405
cross-validation (CV)

[475]

 about 168
 hold-out test set, using 168
 KFold iterator 169
 leave-one-out CV 169
 leave-P-Out CV 170
 ShuffleSplit 170
curse of dimensionality 353

D
data challenges, backtesting pitfalls
 look-ahead bias 130
 outlier control 131
 survivorship bias 130
 unrepresentative period 131
data integration 460
data management technologies
 about 465
 Big Data technologies, Hadoop 466
 Big Data technologies, Spark 466
 database systems 466
data preparation, linear regression
 about 201
 Alpha factor selection 203
 Alpha factor transformation 203
 categorical variables, encoding 204
 data exploration 204
 data, cleaning 203
 forward returns, creating 205
 target return computation 202
 universe creation and time horizon 202
data quality evaluation criteria, alternative datasets
 exclusivity 74
 frequency 74
 legal risks 73
 reliability 75
 reputational risks 73
 time horizon 74
data
 about 459
 extracting, from HTML 80
 learning from 148
 quality control 459
 transforming, into factors 99
 value, unlocking with domain expertise 460
database systems

 about 466
 columnar storage 466
 document store 466
 graph database 466
 key-value storage 466
DataMinr 78
datasets
 building, of restaurant bookings 82, 83
decision trees
 about 285
 custom cross-validation class, coding 288
 decision rules, applying 285, 287
 GridsearchCV for decision trees 297
 predictions, evaluating 293
 preparing 287
 pruning 296
 regression tree, building 288
 regularizing 295
 strengths 300
 using 287
 visualizing 292
 weaknesses 300, 301
density-based spatial clustering of applications with

noise (DBSCAN)
 about 383
 hierarchical DBSCAN 384
dependency parsing 393
dimensionality reduction
 about 352
 curse of dimensionality 355, 357
 linear algorithms 354
 linear dimensionality reduction 357
 manifold learning 372
Direct Market Access (DMA) 16
distributed bag of words (DBOW) 453
distributed memory (DM) 453
diverse data sources
 factors, combining from 108, 109
Doc2Vec
 distributed bag of words (DBOW) 453
 distributed memory (DM) 453
 input data, creating 454
 sentiment analysis 453
 training, on yelp sentiment data 454
document-term matrix (DTM)

[476]

 about 401, 418
 with sklearn 403
documents
 similarity, measuring 402
dollar bars 50
domain expertise
 used, for unlocking value in data 460

E
earnings call transcripts 84
Earnings per Diluted Share (EPS) 61
efficient data storage
 with pandas 63, 64
Efficient Market Hypothesis (EMH) 18
eigen portfolios 358
electronic communication networks (ECN) 16
Electronic Data Gathering, Analysis, and Retrieval

(EDGAR) 57
embeddings
 evaluating 445
evaluation criteria, alternative datasets
 data quality 73
 signal content quality 72
 technical aspects 75
exchange-traded funds (ETFs) 16

F
factor quantiles
 creating 110
factor turnover 117
factors
 about 90
 combining, from diverse data sources 108, 109
 data, transforming into 99
 momentum 90
 quality factors 97
 sentiment factors 90
 size 96
 value factors 93, 94
 volatility 96
false positive rates (FPR) 159
feature engineering 461
features
 extracting, from text data 390
Financial Information eXchange (FIX) 36, 37

Financial Statement and Notes (FSN) 58
financial statement data 57
forward returns
 creating 110
fundamental data time series
 building 58
 financial statements, extracting 58
 notes dataset, extracting 59
 price/earnings time series, building 61, 62
 quarterly Apple filings, retrieving 60
fundamental data
 working with 57

G
Gaussian mixture model (GMM)
 about 384
 expectation-maximization algorithm 385
Gauss—Markov theorem (GMT) 181, 182
GBM implementations
 about 327
 algorithmic innovations, used for driving

performance 328
GBM results
 global feature importance 342
 interpreting 342
 partial dependence plots 343
 SHapley Additive exPlanations SHAP 346
General Data Protection Regulation (GDPR) 73
generalized autoregressive conditional

heteroskedasticity (GARCH) model
 about 244, 245
 lag order, selecting 245
generalized least squares (GLS) 186
generalized least squares (GLSAR) 186
Generalized Linear Models (GLM) 275
Generally Accepted Accounting Principles (GAAP)

57

gensim
 automatic phrase detection 451
 word vectors, from SEC filings 450
geolocation data 70
global minimum variance (GMV) 141
GloVe 448
Gnip 77
Gradient Boosting Machines (GBM) models

[477]

 about 319
 early stopping 321
 ensemble size 321
 learning rate 322
 shrinkage 322
 stochastic gradient boosting 322
 subsampling 322
 training 321
 tuning 321
gradient boosting
 setting 416
 using, with sklearn 323
GridSearchCV
 holdout set, testing 327
 parameter, impact on test scores 325
 parameters, tuning with 324

H
heteroskedasticity 173
hierarchical clustering portfolios (HCP) 146
hierarchical clustering
 about 381
 cons 383
 dendrograms 382
hierarchical risk parity (HRP) 145
hierarchical softmax 444
high-frequency trading (HFT) 16, 33
highest posterior density (HPD) 278
HTML
 data, extracting from 80
 parsing, regular expressions used 85
Hyper Text Transfer Protocol (HTTP) 80
hyperparameters, tuning
 learning parameters 335
 objectives and loss functions 335
 randomized grid search 336
 regularization 336
hyperparameters
 GridsearchCV for decision trees 297
 learning curves 299
 tree structure, inspecting 298
 tuning 297, 335

I
implementation issues, backtesting pitfalls
 mark-to-market performance 131
 timing of trades 132
 trading costs 132
Independent Component Analysis (ICA)
 about 357, 365
 algorithm 366
 assumptions 365
 with Sklearn 366
independently and identically-distributed (iid) 123,

168, 176
information coefficient (IC) 8, 114, 115, 123
information ratio (IR) 114, 123
initial public offerings (IPOs) 42
Interactive Development Environment (IDE) 53
Internet of Things (IoT) 70
inverse document frequency (idf) 403
investments
 in strategic capabilities 23

K
k-Means clustering
 about 377, 378
 density-based clustering 383
 Gaussian mixture model (GMM) 384
 hierarchical clustering 381
 hierarchical risk parity 386, 388
 quality, evaluating 379, 380
KNeighborsRegressor
 example 171
knowledge graph 393

L
L2 norm 355
labeling 393
Lagrange Multiplier (LM) 183
Lasso Path 214
lasso regression, using sklearn
 about 213
 cross-validated information coefficient 214
lasso regression
 working 201
Latent Dirichlet allocation (LDA)

[478]

 about 427, 445
 Dirichlet distribution 428
 evaluating 430
 generative model 428
 implementing, with genism 433
 implementing, with sklearn 431
 perplexity 430
 process, reverse-engineering 429
 results, visualizing with pyLDAvis 432
 topic coherence 430
 working 427
Latent semantic analysis 445
latent semantic indexing (LSI)
 about 420, 421
 cons 424
 implementing, with sklearn 422
 pros 424
lemmatization 393
LightGBM 333, 416
linear algebra
 migrating, to hierarchical probabilistic models

420

linear dimensionality reduction
 about 357
 Independent Component Analysis (ICA) 365
 Principal Component Analysis 358
linear factor model
 building 190
 Capital Asset Pricing Model (CAPM) 191
 risk factors, obtaining 193
linear OLS regression, with sklearn
 about 207
 custom time series cross-validation 207
 features and target, selecting 207
 model, cross-validating 208
 test predictions 209
linear OLS regression, with statsmodels
 diagnostic statistics 206
 estimating 206
linear regression
 for inference and prediction 176
 regularization 198
 using, for return prediction 201
linguistic annotation 392
liquidity detection 17

locally-linear embedding (LLE) 372
Log-Likelihood Ratio (LLR) 219
logistic regression model
 about 215
 logistic function 216
 maximum likelihood estimation 217
 objective function 216
logistic regression
 price movements, predicting with sklearn 220,

222

 used, for prediction 220

M
Macbeth regression 194, 195, 197
machine learning (ML), in investment industry
 about 15, 16
 algorithmic pioneers 20, 21
 electronic trading 16
 factor investing 18
 high-frequency trading 17
 smart beta funds 19
machine learning (ML)
 about 8, 33, 119, 458, 465
 alternative data 23, 24, 25
 tools 467
 used, for solving problems with data 461
machine learning workflow
 about 153
 classification problems 158
 cross-validation, using for model selection 166
 data, collecting 160
 data, preparing 160
 engineer feature 161
 explore feature 161
 exploring 161
 extract feature, using 161
 finance cross-validation, challenges 172
 goals and metrics 154
 k-nearest neighbors (KNN) 154
 ML algorithm, selecting 162
 model, designing 162
 parameter tuning, with scikit-learn 170
 prediction, versus inference 155
 regression problems 156
manifold learning

[479]

 about 152, 372
 t-SNE 374
 UMAP 375
market data
 working with 34
market for alternative data
 about 75, 76
 data providers 77
 email receipt data 79
 geolocation data 79
 satellite data 78
 social sentiment data 77
 use cases 77
market microstructure 34
market order 36
market-data providers 56
marketplaces 34, 35, 36
Markov Chain Monte Carlo (MCMC)
 about 267
 approximate inference 276
 credible intervals 276
Markov Chain Monte Carlo sampling
 about 268
 Gibbs sampling 269
 Hamiltonian Monte Carlo (HMC) 270
 Metropolis-Hastings sampling 270
Material Non-Public Information (MNPI) 73
maximum likelihood estimation (MLE) 238, 264
mean absolute errors (MAE) 156
mean-variance optimization
 about 135
 alternatives 140
 challenges and shortcomings 139
 efficient frontier, in Python 136, 139
 working 136
median absolute errors (MedAE) 156
ML, with text data
 use cases 393
model designing
 about 162
 bias-variance trade-off 163
 learning curves 165
 trade-off, managing 164
 underfitting, versus overfitting 163
model diagnostics

 about 462
 bias-variance trade-off, managing 463
 convergence 277
 No Free Lunch Theorem 462
 optimization verification test 464
 Posterior Predictive Checks 279
 targeted model objectives, defining 463
Modern Portfolio Theory (MPT) 18, 134
momentum factor
 about 90
 key metrics 92
 rationale 91
moving average models
 AR and MA models, relationship 239
 building 238
 number of lags, identifying 239
multilabel problems 150
multinomial logistic regression 416
multinomial Naive Bayes classifier
 evaluating 411
 training 411
Multinomial Naive Bayes model 414
multiple linear regression model
 about 177
 executing 187
 formulating 177, 178
 Gauss—Markov theorem (GMT) 181
 gradient descent 180
 least squares 178
 maximum likelihood estimation 179
 problems, diagnosing 184
 remedy, finding for problems 184
 statistical inference, conducting 182
 training 178
multivariate time series models
 about 250
 systems of equations 250
 VAR model, using for macro fundamentals

forecasts 252, 255
 vector autoregressive (VAR) model 251
mutual information (MI)
 information theory, used for feature evaluation

161

[480]

N
n-grams 392
Naive Bayes classifier
 about 409
 conditional independence assumption 410
Named entity recognition (NER) 393
Nasdaq TotalView-ITCH Order Book data
 about 38
 binary ITCH messages, parsing 38, 39, 41, 42
 order book, reconstructing 42, 44
 trades, reconstructing 42, 44
National Association of Securities Dealers

Automated Quotations (Nasdaq) 35
Natural Language Processing (NLP)
 about 152
 challenges 390
Natural Language Toolkit (NLTK) 400
negative sampling (NEG) 444
Net Order Imbalance Indicator (NOII) 38
neural language models
 learn usage 442
New York Stock Exchange (NYSE) 35
news article classification
 about 411
NLP pipeline, with spaCy/textacy
 about 394
 batch-processing documents 396
 multi-language NLP 398
 n-grams 398
 named entity recognition 397
 parsing 395
 sentence boundary detection 397
 sentence, annotating 396
 streaming API 398
 tokenizing 395
NLP pipeline
 about 394
 key tasks 391
NLP workflow 391
NLP, with TextBlob
 about 400
 sentiment polarity 401
 stemming 400
 subjectivity 401

no-free-lunch theorem 149
noise-contrastive estimation (NCE) 444
NumPy
 for custom factor computations 100

O
OLS
 statsmodels, using 187, 189
one-versus-all logistic regression 415
online trading platforms, ML
 about 468
 QuantConnect 469
 Quantopian 468
 QuantRocket 469
open-source Python libraries
 for algorithmic trading 118
OpenTable data
 scraping 79
order book data
 FIX protocol 37
 Nasdaq TotalView-ITCH Order Book data 38
 tick data, regularizing 45
 working with 36
orthonormal inputs 200
out-of-bag (OOB) 311
overfitting
 controlling 198
 interpretation 198
 prediction accuracy 198
 risks, addressing 294

P
pandas-datareader
 Investor Exchange 52, 53
pandas
 for custom factor computations 100
pandas_datareader 63
parameter tuning, with scikit-learn
 about 171
 GridSearchCV, using 172
 learning curves 171
 validation curves with yellowbricks 171
parsing 392
partial autocorrelation function (PACF) 229
PCA, for algorithmic trading

[481]

 about 366
 data-driven risk factors 366, 369
 dPCA, for algorithmic trading 367
 eigenportfolios 369, 371
Personally Identifiable Information (PII) 73
portfolio
 building, with zipline 120
 rebalancing 120
 risk and return, managing 134, 135
 testing, with zipline 120
POS annotations 392
precision 159
predictive performance
 by factor quantiles 112
Price/Earnings (P/E) 61
Principal Component Analysis (PCA)
 about 357, 358
 algorithm, working 360
 assumptions 359
 covariance matrix 360
 using, with Singular Value Decomposition (SVD)

362

 visualizing, in 2D 358
 with sklearn 363
priors
 conjugacy 265
 empirical prior 265
 objective priors 264
 selecting 264
 subjective priors 265
Probabilistic Latent Semantic Analysis (pLSA)
 about 424
 implementing 425
problem solutions
 goodness-of-fit measures 184
 heteroskedasticity 185
 multicollinearity 187
 serial correlation 186
Public Dissemination Service (PDS) 58
pyfolio
 drawdown periods 128
 event risk, modeling 129
 factor exposure 128
 input, obtaining from alphalens 125
 input, obtaining from zipline backtest 125

 performance statistics 127
 used, for in and out-of-sample performance 124
 used, for performance measurement 122
 walk-forward testing, simulating 126
PyMC3 workflow
 about 272
 Bayesian logistic regression 273
 MCMC 275
 model diagnostics 277
 prediction 279
 variational Bayes 276
PyMC3
 used, for probabilistic programming 271
 workflow 272
Python
 cross-validation, implementing 167

Q
quality factors
 about 97
 key metrics 98, 99
 rationale 98
Quandl 55
quantamental funds 22
QuantConnect 469
quantitative strategies 29
Quantopian
 about 53, 468
 reference 104
QuantRocket 469

R
radient-based one-side sampling (GOSS) 330
random forests
 about 301
 bagging, applying to decision trees 304
 building 306
 cons 311
 Ensemble models 302
 feature importance 310
 model variance, lowering with bagging 303
 out-of-bag testing 311
 pros 311
 training 307
 tuning 307

[482]

RavenPack 78
recall 159
receiver operating characteristics (ROC) 159
recurrent neural networks (RNNs) 33
regular expressions
 used, for parsing HTML 85
reinforcement learning 152
remote data access, with pandas
 about 51
 html tables, reading 51
 pandas-datareader for market data 51
requests
 data, extracting from HTML 80
results evaluation
 about 338
 cross-validation results across models 338
ridge regression, using sklearn
 about 210
 coefficients 212
 cross-validation results 212
 regularization parameters, tuning with cross-

validation 211
 ridge coefficient paths 212
ridge regression
 working 199, 200
riding the yield curve 19
RMSE log of the error (RMSLE) 156
roll return 19
rolling window statistics
 averages, moving 228
 computing 227
 exponential smoothing 228
root-mean-square error (RMSE) 156
RS Metrics 78

S
scheduled trading 120, 122
Scrapy 83
Securities and Exchange Commission (SEC) 16,

57

selected factors, computing from raw stock data
 daily frequency, resampling to monthly frequency

100

 data, loading 100
 different holding periods, using 102

 factor betas, computing 102
 lagged returns, using 102
 momentum factors, computing 101
Selenium 81
semantic annotation 393
sensors
 geolocation data 70, 71
 satellites 70
sentiment analysis
 about 408, 412
 with Doc2Vec 453
sentiment factor
 about 90
 key metrics 92
 rationale 91
sentiment indicators 92
SHapley Additive exPlanation
 feature interaction, analyzing 349
 force plots, using 347
 summarizing 346
Sharpe Ratio (SR)
 about 122, 123
 comparing with performance 280, 281
 modeling, as probabilistic model 281
shrinkage methods 177
signal content quality evaluation criteria, alternative

datasets
 alpha content 73
 alpha quality 73
 asset classes 72
 investment style 72
 risk premiums 72
single alpha factor
 from market data 106
singular value decomposition (SVD) 200
size factor
 about 96
 key metrics 97
 rationale 97
Skip-Gram (SG) model 443
Skip-Gram architecture, Keras
 about 449
 embeddings, visualizing 450
 model components 449
 noise-contrastive estimation 449

[483]

social sentiment data 77
spaCy
 NLP pipeline 394
splash 83
Standard Industrial Classification (SIC) 58
stationarity
 achieving 229
 time-series transformations 230
 unit root tests 233
 unit roots, addressing 231, 232
 unit roots, diagnosing 231, 232
statsmodels
 estimating, with linear OLS regression 206
 used, for conducting inferences 218, 220
stemming 393
stochastic approach
 about 267
 versus deterministic approach 267
stochastic gradient descent
 using, with sklearn 190
stochastic volatility models 283
StockTwits 78
stop words 392
supervised learning 150

T
t-distributed Stochastic Neighbor Embedding (t-

SNE) 354
TA-Lib 103
technical aspects evaluation criteria, alternative

datasets
 format 75
 latency 75
TensorBoard 450
term frequency 403
text classification 408
text data
 features, extracting from 390
 tokenizing 392
text preprocessing 408
textacy
 NLP pipeline 394
TextBlob 400
TfidFTransformer 406
TfidFVectorizer

 about 407
 news articles, summarizing 408
 smoothing 407
tick bars 46, 47
time bars 47, 48, 49
time series patterns
 decomposing 226
time series transformations
 applying 234, 235
time-weighted average pricing (TWAP) 30
tokens 391
topic modeling, for earnings calls
 about 436
 data preprocessing 437
 experiments, executing 438
 model, training 437
topic modeling
 about 419
 for Yelp business reviews 439
trading algorithms
 crowdsourcing 25
trading strategy
 alpha factor research 27
 data management 26
 data sourcing 26
 design 25
 evaluation 27
 execution 26
 portfolio optimization 28
 risk management 28
 strategy-backtesting 28
trained word vectors
 GloVe 448
 using 447
Transmission Control Protocol (TCP) 37
true positive rates (TPR) 159
Twitter data, sentiment analysis
 Multinomial Naive Bayes 412
 TextBlob sentiment score 413

U
Uniform Manifold Approximation and Projection

(UMAP) 354
unigram 392
univariate time series models

 about 236, 238
 ARIMA models, building 239
 autoregressive models, building 237
 macro fundamentals, forecasting 241, 243
 used, for forcasting volatility 243
unsupervised learning
 about 150
 applications 151
 cluster algorithms 151
 dimensionality reduction 152
use cases, ML for Trading
 about 30
 asset allocation 31
 data mining, for feature extraction 30, 31
 reinforcement learning 32
 supervised learning, for alpha factor creation 31
 testing trade ideas 32

V
value at risk (VaR) 131
value factors
 about 93
 key metrics 95
 rationale 94, 95
Variational Inference (VI)
 about 270
 Automatic Differentiation Variational Inference

(ADVI) 271
vector autoregression (VAR) 257
vocabulary 392
volatility factor
 key metrics 97
 rationale 97
 size factors 96
volatility-forecasting model
 building 246, 248, 249
volume bars 49, 50
volume weighted average price (VWAP) 45, 49

W
weighted least squares (WLS) 186
word embeddings
 semantics, encoding 442
word vector embeddings
 training 449
word vectors 442
word vectors, from SEC filings
 model evaluation 452
 model training 451
 performance impact, of parameter settings 452
 preprocessing 450
Word2Vec model
 about 443
 automatic phrase detection 445
 for translation 457
 softmax, simplifying 444

X
XBRL 57, 58
XGBoost 333

Y
Yelp dataset challenge
 about 413
 benchmark accuracy 414
 gradient-boosting machine 416
 multinomial logistic regression 416
 Multinomial Naive Bayes model 414
 one-versus-all logistic regression 415
 text features, combining with numerical features

415

Z
zipline
 about 54
 used, for building portfolio 120
 used, for testing portfolio 120
 using 104

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Chapter 1: Machine Learning for Trading
	How to read this book
	What to expect
	Who should read this book
	How the book is organized
	Part I – the framework – from data to strategy design
	Part 2 – ML fundamentals
	Part 3 – natural language processing
	Part 4 – deep and reinforcement learning

	What you need to succeed
	Data sources
	GitHub repository
	Python libraries

	The rise of ML in the investment industry
	From electronic to high-frequency trading
	Factor investing and smart beta funds
	Algorithmic pioneers outperform humans at scale
	ML driven funds attract $1 trillion AUM
	The emergence of quantamental funds
	Investments in strategic capabilities

	ML and alternative data
	Crowdsourcing of trading algorithms

	Design and execution of a trading strategy
	Sourcing and managing data
	Alpha factor research and evaluation
	Portfolio optimization and risk management
	Strategy backtesting

	ML and algorithmic trading strategies
	Use Cases of ML for Trading
	Data mining for feature extraction
	Supervised learning for alpha factor creation and aggregation
	Asset allocation
	Testing trade ideas
	Reinforcement learning

	Summary

	Chapter 2: Market and Fundamental Data
	How to work with market data
	Market microstructure
	Marketplaces
	Types of orders

	Working with order book data
	The FIX protocol
	Nasdaq TotalView-ITCH Order Book data
	Parsing binary ITCH messages
	Reconstructing trades and the order book

	Regularizing tick data
	Tick bars
	Time bars
	Volume bars
	Dollar bars

	API access to market data
	Remote data access using pandas
	Reading html tables
	pandas-datareader for market data
	The Investor Exchange

	Quantopian
	Zipline
	Quandl
	Other market-data providers

	How to work with fundamental data
	Financial statement data
	Automated processing – XBRL
	Building a fundamental data time series
	Extracting the financial statements and notes dataset
	Retrieving all quarterly Apple filings
	Building a price/earnings time series

	Other fundamental data sources
	pandas_datareader – macro and industry data

	Efficient data storage with pandas
	Summary

	Chapter 3: Alternative Data for Finance
	The alternative data revolution
	Sources of alternative data
	Individuals
	Business processes
	Sensors
	Satellites
	Geolocation data

	Evaluating alternative datasets
	Evaluation criteria
	Quality of the signal content
	Asset classes
	Investment style
	Risk premiums
	Alpha content and quality

	Quality of the data
	Legal and reputational risks
	Exclusivity
	Time horizon
	Frequency
	Reliability

	Technical aspects
	Latency
	Format

	The market for alternative data
	Data providers and use cases
	Social sentiment data
	Dataminr
	StockTwits
	RavenPack

	Satellite data
	Geolocation data
	Email receipt data

	Working with alternative data
	Scraping OpenTable data
	Extracting data from HTML using requests and BeautifulSoup
	Introducing Selenium – using browser automation
	Building a dataset of restaurant bookings
	One step further – Scrapy and splash

	Earnings call transcripts
	Parsing HTML using regular expressions

	Summary

	Chapter 4: Alpha Factor Research
	Engineering alpha factors
	Important factor categories
	Momentum and sentiment factors
	Rationale
	Key metrics

	Value factors
	Rationale
	Key metrics

	Volatility and size factors
	Rationale
	Key metrics

	Quality factors
	Rationale
	Key metrics

	How to transform data into factors
	Useful pandas and NumPy methods
	Loading the data
	Resampling from daily to monthly frequency
	Computing momentum factors
	Using lagged returns and different holding periods
	Compute factor betas

	Built-in Quantopian factors
	TA-Lib

	Seeking signals – how to use zipline
	The architecture – event-driven trading simulation
	A single alpha factor from market data
	Combining factors from diverse data sources

	Separating signal and noise – how to use alphalens
	Creating forward returns and factor quantiles
	Predictive performance by factor quantiles
	The information coefficient
	Factor turnover

	Alpha factor resources
	Alternative algorithmic trading libraries

	Summary

	Chapter 5: Strategy Evaluation
	How to build and test a portfolio with zipline
	Scheduled trading and portfolio rebalancing

	How to measure performance with pyfolio
	The Sharpe ratio
	The fundamental law of active management
	In and out-of-sample performance with pyfolio
	Getting pyfolio input from alphalens
	Getting pyfolio input from a zipline backtest
	Walk-forward testing out-of-sample returns
	Summary performance statistics
	Drawdown periods and factor exposure
	Modeling event risk

	How to avoid the pitfalls of backtesting
	Data challenges
	Look-ahead bias
	Survivorship bias
	Outlier control
	Unrepresentative period

	Implementation issues
	Mark-to-market performance
	Trading costs
	Timing of trades

	Data-snooping and backtest-overfitting
	The minimum backtest length and the deflated SR
	Optimal stopping for backtests

	How to manage portfolio risk and return
	Mean-variance optimization
	How it works
	The efficient frontier in Python
	Challenges and shortcomings

	Alternatives to mean-variance optimization
	The 1/n portfolio
	The minimum-variance portfolio
	Global Portfolio Optimization - The Black-Litterman approach
	How to size your bets – the Kelly rule
	The optimal size of a bet
	Optimal investment – single asset
	Optimal investment – multiple assets

	Risk parity
	Risk factor investment
	Hierarchical risk parity

	Summary

	Chapter 6: The Machine Learning Process
	Learning from data
	Supervised learning
	Unsupervised learning
	Applications
	Cluster algorithms
	Dimensionality reduction

	Reinforcement learning

	The machine learning workflow
	Basic walkthrough – k-nearest neighbors
	Frame the problem – goals and metrics
	Prediction versus inference
	Causal inference

	Regression problems
	Classification problems
	Receiver operating characteristics and the area under the curve
	Precision-recall curves

	Collecting and preparing the data
	Explore, extract, and engineer features
	Using information theory to evaluate features

	Selecting an ML algorithm
	Design and tune the model
	The bias-variance trade-off
	Underfitting versus overfitting
	Managing the trade-off
	Learning curves

	How to use cross-validation for model selection
	How to implement cross-validation in Python
	Basic train-test split

	Cross-validation
	Using a hold-out test set
	KFold iterator
	Leave-one-out CV
	Leave-P-Out CV
	ShuffleSplit

	Parameter tuning with scikit-learn
	Validation curves with yellowbricks
	Learning curves
	Parameter tuning using GridSearchCV and pipeline

	Challenges with cross-validation in finance
	Time series cross-validation with sklearn
	Purging, embargoing, and combinatorial CV

	Summary

	Chapter 7: Linear Models
	Linear regression for inference and prediction
	The multiple linear regression model
	How to formulate the model
	How to train the model
	Least squares
	Maximum likelihood estimation
	Gradient descent

	The Gauss—Markov theorem
	How to conduct statistical inference
	How to diagnose and remedy problems
	Goodness of fit
	Heteroskedasticity
	Serial correlation
	Multicollinearity

	How to run linear regression in practice
	OLS with statsmodels
	Stochastic gradient descent with sklearn

	How to build a linear factor model
	From the CAPM to the Fama—French five-factor model
	Obtaining the risk factors
	Fama—Macbeth regression

	Shrinkage methods: regularization for linear regression
	How to hedge against overfitting
	How ridge regression works
	How lasso regression works

	How to use linear regression to predict returns
	Prepare the data
	Universe creation and time horizon
	Target return computation
	Alpha factor selection and transformation
	Data cleaning – missing data
	Data exploration
	Dummy encoding of categorical variables
	Creating forward returns

	Linear OLS regression using statsmodels
	Diagnostic statistics

	Linear OLS regression using sklearn
	Custom time series cross-validation
	Select features and target
	Cross-validating the model
	Test results – information coefficient and RMSE

	Ridge regression using sklearn
	Tuning the regularization parameters using cross-validation
	Cross-validation results and ridge coefficient paths
	Top 10 coefficients

	Lasso regression using sklearn
	Cross-validated information coefficient and Lasso Path

	Linear classification
	The logistic regression model
	Objective function
	The logistic function
	Maximum likelihood estimation

	How to conduct inference with statsmodels
	How to use logistic regression for prediction
	How to predict price movements using sklearn

	Summary

	Chapter 8: Time Series Models
	Analytical tools for diagnostics and feature extraction
	How to decompose time series patterns
	How to compute rolling window statistics
	Moving averages and exponential smoothing

	How to measure autocorrelation
	How to diagnose and achieve stationarity
	Time series transformations
	How to diagnose and address unit roots
	Unit root tests

	How to apply time series transformations

	Univariate time series models
	How to build autoregressive models
	How to identify the number of lags
	How to diagnose model fit

	How to build moving average models
	How to identify the number of lags
	The relationship between AR and MA models

	How to build ARIMA models and extensions
	How to identify the number of AR and MA terms
	Adding features – ARMAX
	Adding seasonal differencing – SARIMAX

	How to forecast macro fundamentals
	How to use time series models to forecast volatility
	The autoregressive conditional heteroskedasticity (ARCH) model
	Generalizing ARCH – the GARCH model
	Selecting the lag order

	How to build a volatility-forecasting model

	Multivariate time series models
	Systems of equations
	The vector autoregressive (VAR) model
	How to use the VAR model for macro fundamentals forecasts
	Cointegration – time series with a common trend
	Testing for cointegration

	How to use cointegration for a pairs-trading strategy

	Summary

	Chapter 9: Bayesian Machine Learning
	How Bayesian machine learning works
	How to update assumptions from empirical evidence
	Exact inference: Maximum a Posteriori estimation
	How to select priors
	How to keep inference simple – conjugate priors
	How to dynamically estimate the probabilities of asset price moves

	Approximate inference: stochastic versus deterministic approaches
	Sampling-based stochastic inference
	Markov chain Monte Carlo sampling
	Gibbs sampling
	Metropolis-Hastings sampling
	Hamiltonian Monte Carlo – going NUTS

	Variational Inference
	Automatic Differentiation Variational Inference (ADVI)

	Probabilistic programming with PyMC3
	Bayesian machine learning with Theano
	The PyMC3 workflow
	Model definition – Bayesian logistic regression
	Visualization and plate notation
	The Generalized Linear Models module
	MAP inference

	Approximate inference – MCMC
	Credible intervals

	Approximate inference – variational Bayes
	Model diagnostics
	Convergence
	Posterior Predictive Checks

	Prediction

	Practical applications
	Bayesian Sharpe ratio and performance comparison
	Model definition
	Performance comparison

	Bayesian time series models
	Stochastic volatility models

	Summary

	Chapter 10: Decision Trees and Random Forests
	Decision trees
	How trees learn and apply decision rules
	How to use decision trees in practice
	How to prepare the data
	How to code a custom cross-validation class
	How to build a regression tree
	How to build a classification tree
	How to optimize for node purity
	How to train a classification tree

	How to visualize a decision tree
	How to evaluate decision tree predictions
	Feature importance

	Overfitting and regularization
	How to regularize a decision tree
	Decision tree pruning

	How to tune the hyperparameters
	GridsearchCV for decision trees
	How to inspect the tree structure
	Learning curves

	Strengths and weaknesses of decision trees

	Random forests
	Ensemble models
	How bagging lowers model variance
	Bagged decision trees

	How to build a random forest
	How to train and tune a random forest
	Feature importance for random forests
	Out-of-bag testing

	Pros and cons of random forests

	Summary

	Chapter 11: Gradient Boosting Machines
	Adaptive boosting
	The AdaBoost algorithm
	AdaBoost with sklearn

	Gradient boosting machines
	How to train and tune GBM models
	Ensemble size and early stopping
	Shrinkage and learning rate
	Subsampling and stochastic gradient boosting

	How to use gradient boosting with sklearn
	How to tune parameters with GridSearchCV
	Parameter impact on test scores
	How to test on the holdout set

	Fast scalable GBM implementations
	How algorithmic innovations drive performance
	Second-order loss function approximation
	Simplified split-finding algorithms
	Depth-wise versus leaf-wise growth
	GPU-based training
	DART – dropout for trees
	Treatment of categorical features
	Additional features and optimizations

	How to use XGBoost, LightGBM, and CatBoost
	How to create binary data formats
	How to tune hyperparameters
	Objectives and loss functions
	Learning parameters
	Regularization
	Randomized grid search

	How to evaluate the results
	Cross-validation results across models

	How to interpret GBM results
	Feature importance
	Partial dependence plots
	SHapley Additive exPlanations
	How to summarize SHAP values by feature
	How to use force plots to explain a prediction
	How to analyze feature interaction

	Summary

	Chapter 12: Unsupervised Learning
	Dimensionality reduction
	Linear and non-linear algorithms
	The curse of dimensionality
	Linear dimensionality reduction
	Principal Component Analysis
	Visualizing PCA in 2D
	The assumptions made by PCA
	How the PCA algorithm works
	PCA based on the covariance matrix
	PCA using Singular Value Decomposition
	PCA with sklearn

	Independent Component Analysis
	ICA assumptions
	The ICA algorithm
	ICA with sklearn

	PCA for algorithmic trading
	Data-driven risk factors
	Eigen portfolios

	Manifold learning
	t-SNE
	UMAP

	Clustering
	k-Means clustering
	Evaluating cluster quality
	Hierarchical clustering
	Visualization – dendrograms

	Density-based clustering
	DBSCAN
	Hierarchical DBSCAN

	Gaussian mixture models
	The expectation-maximization algorithm

	Hierarchical risk parity

	Summary

	Chapter 13: Working with Text Data
	How to extract features from text data
	Challenges of NLP
	The NLP workflow
	Parsing and tokenizing text data
	Linguistic annotation
	Semantic annotation
	Labeling

	Use cases

	From text to tokens – the NLP pipeline
	NLP pipeline with spaCy and textacy
	Parsing, tokenizing, and annotating a sentence
	Batch-processing documents
	Sentence boundary detection
	Named entity recognition
	N-grams
	spaCy's streaming API
	Multi-language NLP

	NLP with TextBlob
	Stemming
	Sentiment polarity and subjectivity

	From tokens to numbers – the document-term matrix
	The BoW model
	Measuring the similarity of documents

	Document-term matrix with sklearn
	Using CountVectorizer
	Visualizing vocabulary distribution
	Finding the most similar documents

	TfidFTransformer and TfidFVectorizer
	The effect of smoothing
	How to summarize news articles using TfidFVectorizer

	Text Preprocessing - review

	Text classification and sentiment analysis
	The Naive Bayes classifier
	Bayes' theorem refresher
	The conditional independence assumption

	News article classification
	Training and evaluating multinomial Naive Bayes classifier

	Sentiment analysis
	Twitter data
	Multinomial Naive Bayes
	Comparison with TextBlob sentiment scores

	Business reviews – the Yelp dataset challenge
	Benchmark accuracy
	Multinomial Naive Bayes model
	One-versus-all logistic regression
	Combining text and numerical features
	Multinomial logistic regression
	Gradient-boosting machine

	Summary

	Chapter 14: Topic Modeling
	Learning latent topics: goals and approaches
	From linear algebra to hierarchical probabilistic models

	Latent semantic indexing
	How to implement LSI using sklearn
	Pros and cons

	Probabilistic latent semantic analysis
	How to implement pLSA using sklearn

	Latent Dirichlet allocation
	How LDA works
	The Dirichlet distribution
	The generative model
	Reverse-engineering the process

	How to evaluate LDA topics
	Perplexity
	Topic coherence

	How to implement LDA using sklearn
	How to visualize LDA results using pyLDAvis
	How to implement LDA using gensim
	Topic modeling for earnings calls
	Data preprocessing
	Model training and evaluation
	Running experiments

	Topic modeling for Yelp business reviews

	Summary

	Chapter 15: Word Embeddings
	How word embeddings encode semantics
	How neural language models learn usage in context
	The Word2vec model – learn embeddings at scale
	Model objective – simplifying the softmax
	Automatic phrase detection

	How to evaluate embeddings – vector arithmetic and analogies
	How to use pre-trained word vectors
	GloVe – global vectors for word representation

	How to train your own word vector embeddings
	The Skip-Gram architecture in Keras
	Noise-contrastive estimation
	The model components
	Visualizing embeddings using TensorBoard

	Word vectors from SEC filings using gensim
	Preprocessing
	Automatic phrase detection

	Model training
	Model evaluation
	Performance impact of parameter settings

	Sentiment analysis with Doc2vec
	Training Doc2vec on yelp sentiment data
	Create input data

	Bonus – Word2vec for translation
	Summary

	Chapter 16: Next Steps
	Key takeaways and lessons learned
	Data is the single most important ingredient
	Quality control
	Data integration

	Domain expertise helps unlock value in data
	Feature engineering and alpha factor research

	ML is a toolkit for solving problems with data
	Model diagnostics help speed up optimization
	Making do without a free lunch
	Managing the bias-variance trade-off
	Define targeted model objectives
	The optimization verification test

	Beware of backtest overfitting
	How to gain insights from black-box models

	ML for trading in practice
	Data management technologies
	Database systems
	Big Data technologies – Hadoop and Spark

	ML tools
	Online trading platforms
	Quantopian
	QuantConnect
	QuantRocket

	Conclusion

	Other Books You May Enjoy
	Index

